45 research outputs found

    Complementary roles of Cholecystokinin- and Parvalbumin-expressing GABAergic neurons in hippocampal network oscillations

    Get PDF
    In the hippocampal CA1 area, a relatively homogenous population of pyramidal cells is accompanied by a diversity of GABAergic interneurons. Previously, we found that parvalbumin-expressing basket, axo-axonic, bistratified, and oriens-lacunosum moleculare cells, innervating different domains of pyramidal cells, have distinct firing patterns during network oscillations in vivo. A second family of interneurons, expressing cholecystokinin but not parvalbumin, is known to target the same domains of pyramidal cells as do the parvalbumin cells. To test the temporal activity of these independent and parallel GABAergic inputs, we recorded the precise spike timing of identified cholecystokinin interneurons during hippocampal network oscillations in anesthetized rats and determined their molecular expression profiles and synaptic targets. The cells were cannabinoid receptor type 1 immunopositive. Contrary to the stereotyped firing of parvalbumin interneurons, cholecystokinin-expressing basket and dendrite-innervating cells discharge, on average, with 1.7 ± 2.0 Hz during high-frequency ripple oscillations in an episode-dependent manner. During theta oscillations, cholecystokinin-expressing interneurons fire with 8.8 ± 3.3 Hz at a characteristic time on the ascending phase of theta waves (155 ± 81°), when place cells start firing in freely moving animals. The firing patterns of some interneurons recorded in drug-free behaving rats were similar to cholecystokinin cells in anesthetized animals. Our results demonstrate that cholecystokinin- and parvalbumin-expressing interneurons make different contributions to network oscillations and play distinct roles in different brain states. We suggest that the specific spike timing of cholecystokinin interneurons and their sensitivity to endocannabinoids might contribute to differentiate subgroups of pyramidal cells forming neuronal assemblies, whereas parvalbumin interneurons contribute to synchronizing the entire network

    Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli

    Get PDF
    FRAS1 is mutated in some individuals with Fraser syndrome (FS) and the encoded protein is expressed in embryonic epidermal cells, localizing in their basement membrane (BM). Syndactyly and cryptophthalmos in FS are sequelae of skin fragility but the bases for associated kidney malformations are unclear. We demonstrate that Fras1 is expressed in the branching ureteric bud (UB), and that renal agenesis occurs in homozygous Fras1 null mutant blebbed (bl) mice on a C57BL6J background. In vivo, the bl/bl bud fails to invade metanephric mesenchyme which undergoes involution, events replicated in organ culture. The expression of glial cell line-derived neurotrophic factor and growth-differentiation factor 11 was defective in bl/bl renal primordia in vivo, whereas, in culture, the addition of either growth factor restored bud invasion into the mesenchyme. Mutant primordia also showed deficient expression of Hoxd11 and Six2 transcription factors, whereas the activity of bone morphogenetic protein 4, an anti-branching molecule, was upregulated. In wild types, Fras1 was also expressed by nascent nephrons. Foetal glomerular podocytes expressed Fras1 transcripts and Fras1 immunolocalized in a glomerular BM-like pattern. On a mixed background, bl mutants, and also compound mutants for bl and my, another bleb strain, sometimes survive into adulthood. These mice have two kidneys, which contain subsets of glomeruli with perturbed nephrin, podocin, integrin α3 and fibronectin expression. Thus, Fras1 protein coats branching UB epithelia and is strikingly upregulated in the nephron lineage after mesenchymal/epithelial transition. Fras1 deficiency causes defective interactions between the bud and mesenchyme, correlating with disturbed expression of key nephrogenic molecules. Furthermore, Fras1 may also be required for the formation of normal glomeruli

    Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes

    Get PDF
    Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease

    Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling.

    No full text
    Hippocampal CA1 pyramidal cells, which receive γ-aminobutyric acid (GABA)ergic input from at least 18 types of presynaptic neuron, express 14 subunits of the pentameric GABA(A) receptor. The relative contribution of any subunit to synaptic and extrasynaptic receptors influences the dynamics of GABA and drug actions. Synaptic receptors mediate phasic GABA-evoked conductance and extrasynaptic receptors contribute to a tonic conductance. We used freeze-fracture replica-immunogold labelling, a sensitive quantitative immunocytochemical method, to detect synaptic and extrasynaptic pools of the alpha1, alpha2 and beta3 subunits. Antibodies to the cytoplasmic loop of the subunits showed immunogold particles concentrated on distinct clusters of intramembrane particles (IMPs) on the cytoplasmic face of the plasma membrane on the somata, dendrites and axon initial segments, with an abrupt decrease in labelling at the edge of the IMP cluster. Neuroligin-2, a GABAergic synapse-specific adhesion molecule, co-labels all beta3 subunit-rich IMP clusters, therefore we considered them synapses. Double-labelling for two subunits showed that virtually all somatic synapses contain the alpha1, alpha2 and beta3 subunits. The extrasynaptic plasma membrane of the somata, dendrites and dendritic spines showed low-density immunolabelling. Synaptic labelling densities on somata for the alpha1, alpha2 and beta3 subunits were 78-132, 94 and 79 times higher than on the extrasynaptic membranes, respectively. As GABAergic synapses occupy 0.72% of the soma surface, the fraction of synaptic labelling was 33-48 (alpha1), 40 (alpha2) and 36 (beta3)% of the total somatic surface immunolabelling. Assuming similar antibody access to all receptors, about 60% of these subunits are in extrasynaptic receptors

    Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling.

    No full text
    Hippocampal CA1 pyramidal cells, which receive γ-aminobutyric acid (GABA)ergic input from at least 18 types of presynaptic neuron, express 14 subunits of the pentameric GABA(A) receptor. The relative contribution of any subunit to synaptic and extrasynaptic receptors influences the dynamics of GABA and drug actions. Synaptic receptors mediate phasic GABA-evoked conductance and extrasynaptic receptors contribute to a tonic conductance. We used freeze-fracture replica-immunogold labelling, a sensitive quantitative immunocytochemical method, to detect synaptic and extrasynaptic pools of the alpha1, alpha2 and beta3 subunits. Antibodies to the cytoplasmic loop of the subunits showed immunogold particles concentrated on distinct clusters of intramembrane particles (IMPs) on the cytoplasmic face of the plasma membrane on the somata, dendrites and axon initial segments, with an abrupt decrease in labelling at the edge of the IMP cluster. Neuroligin-2, a GABAergic synapse-specific adhesion molecule, co-labels all beta3 subunit-rich IMP clusters, therefore we considered them synapses. Double-labelling for two subunits showed that virtually all somatic synapses contain the alpha1, alpha2 and beta3 subunits. The extrasynaptic plasma membrane of the somata, dendrites and dendritic spines showed low-density immunolabelling. Synaptic labelling densities on somata for the alpha1, alpha2 and beta3 subunits were 78-132, 94 and 79 times higher than on the extrasynaptic membranes, respectively. As GABAergic synapses occupy 0.72% of the soma surface, the fraction of synaptic labelling was 33-48 (alpha1), 40 (alpha2) and 36 (beta3)% of the total somatic surface immunolabelling. Assuming similar antibody access to all receptors, about 60% of these subunits are in extrasynaptic receptors

    Severity-duration-frequency analysis of droughts and wet periods in Greece

    No full text
    There is an escalation in the frequency and severity of extreme events due to a number of environmental and/or anthropogenic factors. Droughts and exceptionally wet periods are regional phenomena, which are considered as major environmental extremes, especially in semiarid regions of the world, such as Greece. The development of severity-duration-frequency (SDF) relationships of droughts and wet periods over Greece is important in contemporary hydroclimatic and agroclimatic design and planning in the country. The Palmer Drought Severity Index (PDSI) is used for a quantitative description of droughts and wet periods. Statistical tests and visual inspection indicate that the EV1 (Gumbel) frequency distribution fits satisfactorily all the identified durations of droughts and wet periods, respectively. Moreover, the SDF curves show that decreasing frequencies (i.e. increasing recurrence intervals) correspond to increasing severities of droughts and wet periods, respectively. The developed SDF relationships are used to produce tables and isoseverity maps of Greece for each identified duration and all the selected return periods or frequencies, which constitute an essential aid for design purposes. The results of the study indicate that there is a decreasing pattern of the severities of droughts and wet periods from west to east and that, for similar durations and return periods, the wet spells are, in general, more extreme than droughts in Greece
    corecore