2,259 research outputs found

    Origin of time reversal symmetry breaking in Y(1-y)Ca(y)Ba(2)Cu(3)O(7-x)

    Full text link
    We have studied the Zero Bias Conductance Peak (ZBCP) of the tunneling conductance measured on (1,1,0) oriented Y(1-y)Ca(y)Ba(2)Cu(3)O(7-x) thin films as a function of doping and of magnetic field. A spontaneous (zero field) split of the ZBCP was observed only in overdoped samples (either by O or by Ca). The magnitude of this split was found to be linear in doping. All samples exhibited a magnetic field splitting, also strongly doping dependent. The field susceptibility chi=d(delta)/dH diverges at the point at which spontaneous ZBCP splitting occurs, its inverse value, chi^(-1), following a linear doping dependence on both the underdoped and overdoped sides. We discuss these results in terms of recent theoretical models of Time Reversal Symmetry Breaking (TRSB).Comment: 5 figure

    A Taxing Settlement

    Get PDF
    Citizens sue industries for tort injuries. That is familiar. Governments sue the same industries for costs suffered in ameliorating or preventing those injuries. That is unfamiliar. This new pattern of litigation and settlement inherently puts the government in competition with its citizens

    A Taxing Settlement

    Get PDF
    The following essay is based on the talk Government, Citizens, and Injurious Industries: A Case Study of the Tobacco Litigation, delivered by Hanoch Dagan last May to the Detroit Chapter of the International Association of Jewish Lawyers and Jurists, and on the article Governments, Citizens, and Injurious Industries, by Dagan and James J. White, \u2762, which appeared in 75.2 New York University Law Review 254-428 (May 2000). The authors hold conflicting view on the underlying issue of this topic: tobacco company product liability. Professor Dagan holds the position that tobacco companies are liable for harm done by their products; Professor White argues that tobacco companies are not liable for harm done by their products

    Role of oxygen in the electron-doped superconducting cuprates

    Full text link
    We report on resistivity and Hall measurements in thin films of the electron-doped superconducting cuprate Pr2−x_{2-x}Cex_{x}CuO4±δ_{4\pm\delta}. Comparisons between x = 0.17 samples subjected to either ion-irradiation or oxygenation demonstrate that changing the oxygen content has two separable effects: 1) a doping effect similar to that of cerium, and 2) a disorder effect. These results are consistent with prior speculations that apical oxygen removal is necessary to achieve superconductivity in this compound.Comment: 5 pages, 5 figure

    Use of groundwater lifetime expectancy for the performance assessment of a deep geologic waste repository: 1. Theory, illustrations, and implications

    Full text link
    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. The risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The utility of the method is illustrated by means of analytical and numerical examples, which focus on the effect of fracture networks on the uncertainty of evaluated lifetime expectancy.Comment: 11 pages, 8 figures; Water Resources Research, Vol. 44, 200

    Polydisperse spray flames in vortex flows

    Full text link
    [EN] A new mathematical analysis of the dynamics of laminar spray diffusion flames in the vicinity of a vortex flow field is presented. The governing equations for a spray evaporating in an unsteady vortex are studied. New similarity solutions are found for the dynamics of the spray and the flame it supports. Analytical solutions for the spray flames are derived using Schvab-Zeldovich parameters, through which the radial evolution of the flames is found. The results based on the solution reveal the significant influence the droplets size has on the diffusion flame dynamics in the vicinity of vortical flows.Dagan, Y.; Katoshevski, D.; Greenberg, BJ. (2017). Polydisperse spray flames in vortex flows. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 702-708. https://doi.org/10.4995/ILASS2017.2017.4716OCS70270

    Field Induced Nodal Order Parameter in the Tunneling Spectrum of YBa2_2Cu3_3O7−x_{7-x} Superconductor

    Full text link
    We report planar tunneling measurements on thin films of YBa2_2Cu3_3O7−x_{7-x} at various doping levels under magnetic fields. By choosing a special setup configuration, we have probed a field induced energy scale that dominates in the vicinity of a node of the d-wave superconducting order parameter. We found a high doping sensitivity for this energy scale. At Optimum doping this energy scale is in agreement with an induced idxyid_{xy} order parameter. We found that it can be followed down to low fields at optimum doping, but not away from it.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Remarkable change of tunneling conductance in YBCO films in fields up to 32.4T

    Full text link
    We studied the tunneling density of states in YBCO films under strong currents flowing along node directions. The currents were induced by fields of up to 32.4T parallel to the film surface and perpendicular to the CuO2CuO_{2} planes. We observed a remarkable change in the tunneling conductance at high fields where the gap-like feature shifts discontinuously from 15meV to a lower bias of 11meV, becoming more pronounced as the field increases. The effect takes place in increasing fields around 9T and the transition back to the initial state occurs around 5T in decreasing fields. We argue that this transition is driven by surface currents induced by the applied magnetic field.Comment: 4 pages, 7 figure

    On the resistivity at low temperatures in electron-doped cuprate superconductors

    Full text link
    We measured the magnetoresistance as a function of temperature down to 20mK and magnetic field for a set of underdoped PrCeCuO (x=0.12) thin films with controlled oxygen content. This allows us to access the edge of the superconducting dome on the underdoped side. The sheet resistance increases with increasing oxygen content whereas the superconducting transition temperature is steadily decreasing down to zero. Upon applying various magnetic fields to suppress superconductivity we found that the sheet resistance increases when the temperature is lowered. It saturates at very low temperatures. These results, along with the magnetoresistance, cannot be described in the context of zero temperature two dimensional superconductor-to-insulator transition nor as a simple Kondo effect due to scattering off spins in the copper-oxide planes. We conjecture that due to the proximity to an antiferromagnetic phase magnetic droplets are induced. This results in negative magnetoresistance and in an upturn in the resistivity.Comment: Accepted in Phys. Rev.
    • …
    corecore