4,420 research outputs found
Representations of hom-Lie algebras
In this paper, we study representations of hom-Lie algebras. In particular,
the adjoint representation and the trivial representation of hom-Lie algebras
are studied in detail. Derivations, deformations, central extensions and
derivation extensions of hom-Lie algebras are also studied as an application.Comment: 16 pages, multiplicative and regular hom-Lie algebras are used,
Algebra and Representation Theory, 15 (6) (2012), 1081-109
Geometrical Stiffness of Thin-Walled I-Beam Element Based on Rigid-Beam Assemblage Concept
[[abstract]]Using conventional virtual work method to derive geometric stiffness of a thin-walled beam element, researchers usually have to deal with nonlinear strains with high order terms and the induced moments caused by cross sectional stress results under rotations. To simplify the laborious procedure, this study decomposes an I-beam element into three narrow beam components in conjunction with geometrical hypothesis of rigid cross section. Then let us adopt Yang et al.'s simplified geometric stiffness matrix [kg]12×12 of a rigid beam element as the basis of geometric stiffness of a narrow beam element. Finally, we can use rigid beam assemblage and stiffness transformation procedure to derivate the geometric stiffness matrix [kg]14×14 of an I-beam element, in which two nodal warping deformations are included. From the derived [kg]14×14 matrix, it can take into account the nature of various rotational moments, such as semi-tangential (ST) property for St. Venant torque and quasi-tangential (QT) property for both bending moment and warping torque. The applicability of the proposed [kg]14×14 matrix to buckling problem and geometric nonlinear analysis of loaded I-shaped beam structures will be verified and compared with the results presented in existing literatures. Moreover, the post-buckling behavior of a centrally-load web-tapered I-beam with warping restraints will be investigated as well.[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]紙本[[countrycodes]]GB
Deformation of dual Leibniz algebra morphisms
An algebraic deformation theory of morphisms of dual Leibniz algebras is
obtained.Comment: 10 pages. To appear in Communications in Algebr
Hom-quantum groups I: quasi-triangular Hom-bialgebras
We introduce a Hom-type generalization of quantum groups, called
quasi-triangular Hom-bialgebras. They are non-associative and non-coassociative
analogues of Drinfel'd's quasi-triangular bialgebras, in which the
non-(co)associativity is controlled by a twisting map. A family of
quasi-triangular Hom-bialgebras can be constructed from any quasi-triangular
bialgebra, such as Drinfel'd's quantum enveloping algebras. Each
quasi-triangular Hom-bialgebra comes with a solution of the quantum
Hom-Yang-Baxter equation, which is a non-associative version of the quantum
Yang-Baxter equation. Solutions of the Hom-Yang-Baxter equation can be obtained
from modules of suitable quasi-triangular Hom-bialgebras.Comment: 21 page
Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras
We present a procedure to construct (n+1)-Hom-Nambu-Lie algebras from
n-Hom-Nambu-Lie algebras equipped with a generalized trace function. It turns
out that the implications of the compatibility conditions, that are necessary
for this construction, can be understood in terms of the kernel of the trace
function and the range of the twisting maps. Furthermore, we investigate the
possibility of defining (n+k)-Lie algebras from n-Lie algebras and a k-form
satisfying certain conditions
Positivity of Quasilocal Mass
Motivated by the important work of Brown adn York on quasilocal energy, we
propose definitions of quasilocal energy and momentum surface energy of a
spacelike 2-surface with positive intrinsic curvature in a spacetime. We show
that the quasilocal energy of the boundary of a compact spacelike hypersurface
which satisfies the local energy condition is strictly positive unless the
spacetime is flat along the spacelike hypersurface.Comment: 4 pages; final published versio
Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras
In this paper we construct ternary -Virasoro-Witt algebras which
-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie
and Zachos using enveloping algebra techniques. The ternary
Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a
parameter and are not Nambu-Lie algebras for all but finitely many values of
this parameter. For the parameter values for which the ternary Virasoro-Witt
algebras are Nambu-Lie, the corresponding ternary -Virasoro-Witt algebras
constructed in this article are also Hom-Nambu-Lie because they are obtained
from the ternary Nambu-Lie algebras using the composition method. For other
parameter values this composition method does not yield Hom-Nambu Lie algebra
structure for -Virasoro-Witt algebras. We show however, using a different
construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and
Zachos, as well as the general ternary -Virasoro-Witt algebras we construct,
carry a structure of ternary Hom-Nambu-Lie algebra for all values of the
involved parameters
Spintronic single qubit gate based on a quantum ring with spin-orbit interaction
In a quantum ring connected with two external leads the spin properties of an
incoming electron are modified by the spin-orbit interaction resulting in a
transformation of the qubit state carried by the spin. The ring acts as a one
qubit spintronic quantum gate whose properties can be varied by tuning the
Rashba parameter of the spin-orbit interaction, by changing the relative
position of the junctions, as well as by the size of the ring. We show that a
large class of unitary transformations can be attained with already one ring --
or a few rings in series -- including the important cases of the Z, X, and
Hadamard gates. By choosing appropriate parameters the spin transformations can
be made unitary, which corresponds to lossless gates.Comment: 4 pages, 4 figure
Non-Existence of Time-Periodic Solutions of the Dirac Equation in a Reissner-Nordstrom Black Hole Background
It is shown analytically that the Dirac equation has no normalizable,
time-periodic solutions in a Reissner-Nordstrom black hole background; in
particular, there are no static solutions of the Dirac equation in such a
background field. The physical interpretation is that Dirac particles can
either disappear into the black hole or escape to infinity, but they cannot
stay on a periodic orbit around the black hole.Comment: 24 pages, 2 figures (published version
Zooming in on local level statistics by supersymmetric extension of free probability
We consider unitary ensembles of Hermitian NxN matrices H with a confining
potential NV where V is analytic and uniformly convex. From work by
Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit
of the characteristic function for a finite-rank Fourier variable K is
determined by the Voiculescu R-transform, a key object in free probability
theory. Going beyond these results, we argue that the same holds true when the
finite-rank operator K has the form that is required by the Wegner-Efetov
supersymmetry method of integration over commuting and anti-commuting
variables. This insight leads to a potent new technique for the study of local
statistics, e.g., level correlations. We illustrate the new technique by
demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section
- …
