36 research outputs found

    A conducting polymer with enhanced electronic stability applied in cardiac models

    No full text
    Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties. We show that, by immobilizing the dopant in the conductive scaffold, we can prevent its electric deterioration. We grew polyaniline (PANI) doped with phytic acid on the surface of a chitosan film. The strong chelation between phytic acid and chitosan led to a conductive patch with retained electroactivity, low surface resistivity (35.85 ± 9.40 kilohms per square), and oxidized form after 2 weeks of incubation in physiological medium. Ex vivo experiments revealed that the conductive nature of the patch has an immediate effect on the electrophysiology of the heart. Preliminary in vivo experiments showed that the conductive patch does not induce proarrhythmogenic activities in the heart. Our findings set the foundation for the design of electronically stable CP-based scaffolds. This provides a robust conductive system that could be used at the interface with electroresponsive tissue to better understand the interaction and effect of these materials on the electrophysiology of these tissues

    Minimum Information about a Neuroscience Investigation (MINI) Electrophysiology

    Get PDF
    This module represents the formalized opinion of the authors and the CARMEN consortium, which identifies the minimum information required to report the use of electrophysiology in a neuroscience study, for submission to the CARMEN system (www.carmen.org.uk).
&#xa

    Thermal Resonance in Signal Transmission

    Get PDF
    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.Comment: To appear in Phys. Rev.

    fMRI changes over time and reproducibility in unmedicated subjects at high genetic risk of schizophrenia

    Get PDF
    Background. Functional brain abnormalities have been repeatedly demonstrated in schizophrenia but there is little data concerning their progression. For such studies to have credibility it is first important to establish the reproducibility of functional imaging techniques. The current study aimed to examine these factors in healthy controls and in unmedicated subjects at high genetic risk of the disorder: (i) to examine the reproducibility of task-related activation patterns, (ii) to determine if there were any progressive functional changes in high-risk subjects versus controls reflecting inheritance of the schizophrenic trait, and (iii) to examine changes over time in relation to fluctuating positive psychotic symptoms (i.e. state effects). Method. Subjects were scanned performing the Hayling sentence completion test on two occasions 18 months apart. Changes in activation were examined in controls and high-risk subjects (n=16, n=63). Reproducibility was assessed for controls and high-risk subjects who remained asymptomatic at both time points (n=16, n=32). Results. Intra-class correlation values indicated good agreement between scanning sessions. No significant differences over time were seen between the high-risk and control group; however, comparison of high-risk subjects who developed symptoms versus those who remained asymptomatic revealed activation increases in the left middle temporal gyrus (p = 0.026). Conclusions. The current results suggest that functional changes over time occur in the lateral temporal cortex as high genetic risk subjects become symptomatic, further, they indicate the usefulness of functional imaging tools for investigating progressive changes associated with state and trait effects in schizophrenia

    What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology

    Get PDF
    Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology
    corecore