14,632 research outputs found

    A bright millisecond radio burst of extragalactic origin

    Full text link
    Pulsar surveys offer one of the few opportunities to monitor even a small fraction (~0.00001) of the radio sky for impulsive burst-like events with millisecond durations. In analysis of archival survey data, we have discovered a 30-Jy dispersed burst of duration <5 ms located three degrees from the Small Magellanic Cloud. The burst properties argue against a physical association with our Galaxy or the Small Magellanic Cloud. Current models for the free electron content in the Universe imply a distance to the burst of <1 Gpc No further bursts are seen in 90-hr of additional observations, implying that it was a singular event such as a supernova or coalescence of relativistic objects. Hundreds of similar events could occur every day and act as insightful cosmological probes.Comment: 18 pages, 4 figures. Accepted by Science. Published electronically via Science Express on September 27, 200

    Independent Orbiter Assessment (IOA): Analysis of the atmospheric revitalization pressure control subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Atmospheric Revitalization and Pressure Control Subsystem (ARPCS) are documented. The ARPCS hardware was categorized into the following subdivisions: (1) Atmospheric Make-up and Control (including the Auxiliary Oxygen Assembly, Oxygen Assembly, and Nitrogen Assembly); and (2) Atmospheric Vent and Control (including the Positive Relief Vent Assembly, Negative Relief Vent Assembly, and Cabin Vent Assembly). The IOA analysis process utilized available ARPCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode

    Performance constraints and compensation for teleoperation with delay

    Get PDF
    A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs

    Lutz-Kelker bias in pulsar parallax measurements

    Get PDF
    Lutz & Kelker showed that parallax measurements are systematically overestimated because they do not properly account for the larger volume of space that is sampled at smaller parallax values. We apply their analysis to neutron stars, incorporating the bias introduced by the intrinsic radio luminosity function and a realistic Galactic population model for neutron stars. We estimate the bias for all published neutron star parallax measurements and find that measurements with less than ~95% certainty, are likely to be significantly biased. Through inspection of historic parallax measurements, we confirm the described effects in optical and radio measurements, as well as in distance estimates based on interstellar dispersion measures. The potential impact on future tests of relativistic gravity through pulsar timing and on X-ray--based estimates of neutron star radii is briefly discussed.Comment: 9 pages, 3 tables, 1 figure. Accepted for publication in MNRA

    PSR J1453+1902 and the radio luminosities of solitary versus binary millisecond pulsars

    Get PDF
    We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our observations show that PSR J1453+1902 is solitary and has a proper motion of 8(2) mas/yr. At the nominal distance of 1.2 kpc estimated from the pulsar's dispersion measure, this corresponds to a transverse speed of 46(11) km/s, typical of the millisecond pulsar population. We analyse the current sample of 55 millisecond pulsars in the Galactic disk and revisit the question of whether the luminosities of isolated millisecond pulsars are different from their binary counterparts. We demonstrate that the apparent differences in the luminosity distributions seen in samples selected from 430-MHz surveys can be explained by small-number statistics and observational selection biases. An examination of the sample from 1400-MHz surveys shows no differences in the distributions. The simplest conclusion from the current data is that the spin, kinematic, spatial and luminosity distributions of isolated and binary millisecond pulsars are consistent with a single homogeneous population.Comment: 8 pages, 5 figures and 3 tables, accepted for publication by MNRA

    New Binary and Millisecond Pulsars from Arecibo Drift-Scan Searches

    Full text link
    We discuss four recycled pulsars found in Arecibo drift-scan searches. PSR J1944+0907 has a spin period of 5.2 ms and is isolated. The 5.8-ms pulsar J1453+19 may have a low-mass companion. We discuss these pulsars in the context of isolated millisecond pulsar formation and the minimum spin period of neutron stars. The isolated 56-ms pulsar J0609+2130 is possibly the remnant of a disrupted double neutron star binary. The 41-ms pulsar J1829+2456 is in a relativistic orbit. Its companion is most likely another neutron star, making this the eighth known double neutron star binary system.Comment: 6 pages, 3 figures, to appear in proceedings of Aspen Center for Physics Conference on ``Binary Radio Pulsars'' Eds. F. Rasio and I. Stair
    corecore