10,905 research outputs found
Gas Requirements in Pressurized Transfer of Liquid Hydrogen
Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper
Experiments in free shear flows: Status and needs for the future
Experiments in free turbulent flows are recommended with the primary concern placed on classical flows in order to augment understanding and for model building. Five classes of experiments dealing with classical free turbulent flows are outlined and proposed as being of particular significance for the near future. These classes include the following: (1) Experiments clarifying the effect of density variation owing to use of different gases, with and without the additional effect of density variation due to high Mach number or other effects; (2) experiments clarifying the role and importance of various parameters which determine the behavior of the near field as well as the condictions under which any of these parameters can be neglected; (3) experiments determining the cumulative effect of initial conditions in terms of distance to fully established flow; (4) experiments for cases where two layers of distinctly different initial turbulence structure flow side by side at the same mean speed; and (5) experiment using contemporary experimental techniques to study structure in free turbulent shear flows in order to compliment and support contemporary work on boundary layers
Further studies of methods for reducing community noise around airports
A simplified method of analysis was used in which all flights at a 'simulated' airport were assumed to operate from one runway in a single direction. For this simulated airport, contours of noise exposure forecast were obtained and evaluated. A flight schedule of the simulated airport which is representative of the 23 major U. S. airports was used. The effect of banning night-time operations by four-engine, narrow-body aircraft in combination with other noise reduction options was studied. The reductions in noise which would occur of two- and three-engine, narrow-body aircraft equipped with a refanned engine was examined. A detailed comparison of the effects of engine cutback on takeoff versus the effects of retrofitting quiet nacelles for narrow-body aircraft was also examined. A method of presenting the effects of various noise reduction options was treated
Low-dimensional dynamics embedded in a plane Poiseuille flow turbulence : Traveling-wave solution is a saddle point ?
The instability of a streak and its nonlinear evolution are investigated by
direct numerical simulation (DNS) for plane Poiseuille flow at Re=3000. It is
suggested that there exists a traveling-wave solution (TWS). The TWS is
localized around one of the two walls and notably resemble to the coherent
structures observed in experiments and DNS so far. The phase space structure
around this TWS is similar to a saddle point. Since the stable manifold of this
TWS is extended close to the quasi two dimensional (Q2D) energy axis, the
approaching process toward the TWS along the stable manifold is approximately
described as the instability of the streak (Q2D flow) and the succeeding
nonlinear evolution. Bursting corresponds to the escape from the TWS along the
unstable manifold. These manifolds constitute part of basin boundary of the
turbulent state.Comment: 5 pages, 6 figure
Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents
Grown organic matter as a fuel raw material resource
An extensive search was made on biomass production from the standpoint of climatic zones, water, nutrients, costs and energy requirements for many species. No exotic species were uncovered that gave hope for a bonanza of biomass production under culture, location, and management markedly different from those of existing agricultural concepts. A simulation analysis of biomass production was carried out for six species using conventional production methods, including their production costs and energy requirements. These estimates were compared with data on food, fiber, and feed production. The alternative possibility of using residues from food, feed, or lumber was evaluated. It was concluded that great doubt must be cast on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. The feasibility of collecting residues may be nearer, but the competition for the residues for return to the soil or cellulosic production is formidable
Predicting university performance in psychology: the role of previous performance and discipline-specific knowledge
Recent initiatives to enhance retention and widen participation ensure it is crucial to understand the factors that predict students' performance during their undergraduate degree. The present research used Structural Equation Modeling (SEM) to test three separate models that examined the extent to which British Psychology students' A-level entry qualifications predicted: (1) their performance in years 1-3 of their Psychology degree, and (2) their overall degree performance. Students' overall A-level entry qualifications positively predicted performance during their first year and overall degree performance, but negatively predicted their performance during their third year. Additionally, and more specifically, students' A-level entry qualifications in Psychology positively predicted performance in the first year only. Such findings have implications for admissions tutors, as well as for students who have not studied Psychology before but who are considering applying to do so at university
Autism and the U.K. secondary school experience
This research investigated the self-reported mainstream school experiences of those diagnosed on the autistic spectrum compared with the typically developing school population. Existing literature identifies four key areas that affect the quality of the school experience for students with autism: social skills, perceived relationships with teaching staff, general school functioning, and interpersonal strengths of the young person. These areas were explored in a mainstream U.K. secondary school with 14 students with autism and 14 age and gender matched students without autism, using self-report questionnaires and semi-structured interviews. Quantitative analyses showed consistent school experiences for both groups, although content analysis of interview data highlighted some differences in the ways in which the groups perceive group work, peers, and teaching staff within school. Implications for school inclusion are discussed, drawing attention to how staff awareness of autism could improve school experience and success for students with autism attending mainstream schools
- …
