research

Low-dimensional dynamics embedded in a plane Poiseuille flow turbulence : Traveling-wave solution is a saddle point ?

Abstract

The instability of a streak and its nonlinear evolution are investigated by direct numerical simulation (DNS) for plane Poiseuille flow at Re=3000. It is suggested that there exists a traveling-wave solution (TWS). The TWS is localized around one of the two walls and notably resemble to the coherent structures observed in experiments and DNS so far. The phase space structure around this TWS is similar to a saddle point. Since the stable manifold of this TWS is extended close to the quasi two dimensional (Q2D) energy axis, the approaching process toward the TWS along the stable manifold is approximately described as the instability of the streak (Q2D flow) and the succeeding nonlinear evolution. Bursting corresponds to the escape from the TWS along the unstable manifold. These manifolds constitute part of basin boundary of the turbulent state.Comment: 5 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 23/04/2021