114,681 research outputs found
The correspondence principle in inelastic scattering
Quantum number correspondence principle in inelastic scatterin
Diffuse interstellar bands in fullerene planetary nebulae: the fullerenes - diffuse interstellar bands connection
We present high-resolution (R~15000) VLT/UVES optical spectra of two
planetary nebulae (PNe; Tc 1 and M 1-20) where C60 (and C70) fullerenes have
already been found. These spectra are of high-quality (S/N > 300) for PN Tc 1,
which permits us to search for the expected electronic transitions of neutral
C60 and diffuse interstellar bands (DIBs). Surprisingly, we report the
non-detection of the most intense optical bands of C60 in Tc 1, although this
could be explained by the low C60 column density estimated from the C60
infrared bands if the C60 emission peaks far away from the central star. The
strongest and most common DIBs in both fullerene PNe are normal for their
reddening. Interestingly, the very broad 4428 A DIB and the weaker 6309 A DIB
are found to be unusually intense in Tc 1. We also report the detection of a
new broad (FWHM~5 A) unidentified band at ~6525 A. We propose that the 4428 A
DIB (probably also the 6309 A DIB and the new 6525 A band) may be related to
the presence of larger fullerenes (e.g., C80, C240, C320, and C540) and
buckyonions (multishell fullerenes such as C60@C240 and C60@C240@C540) in the
circumstellar envelope of Tc 1.Comment: Accepted for publication in Astronomy & Astrophysics Letters (6
pages, 4 figures, and 1 Table
Charge transfer in the classical binary encounter approximation
Charge transfer in classical binary encounter approximatio
Extraordinary nonlinear plasmonics in graphene nanoislands
Nonlinear optical processes rely on the intrinsically weak interactions
between photons enabled by their coupling with matter. Unfortunately, many
applications in nonlinear optics are severely hindered by the small response of
conventional materials. Metallic nanostructures partially alleviate this
situation, as the large light enhancement associated with their localized
plasmons amplifies their nonlinear response to record high levels. Graphene
hosts long-lived, electrically tunable plasmons that also interact strongly
with light. Here we show that the nonlinear polarizabilities of graphene
nanoislands can be electrically tuned to surpass by several orders of magnitude
those of metal nanoparticles of similar size. This extraordinary behavior
extends over the visible and near-infrared for islands consisting of hundreds
of carbon atoms doped with moderate carrier densities. Our quantum-mechanical
simulations of the plasmon-enhanced optical response of nanographene reveal
this material as an ideal platform for the development of electrically tunable
nonlinear optical nanodevices.Comment: 16 pages, 12 figures, 54 reference
- …
