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Abstract

Ionization of hydrogen by electrons is examined for the case of
high incident electron energies. The Born quantum cross section is found
to approach the classical expression in the limit of large principal
quantum numbers. The energy dependence of the cross section at high
energy is discussed; it is expected that the cross sections go smoothly

from }-9-%—2 to %behavior as n becomes large.




I. INTRODUCTION

There have been a number of recent pa,persl"6 dealing with
classical models for inelastic collisions; most of these concern the
Gryzinskil binary encounter model. Though it is often stated that the
quantum and classical cross sections differ in their high energy be-
havior, the nature of the relationship has not been carefully explored.
That they should be intimately related is suggested by the equality of
the quantum and classical elastic coulomb cross section. Section II
shows that the classical differential cross section and the quantum
cross section for ionization in the binary encounter aspproximation are
related simply. Section III illustrates the correspondence between the
two expressions in the limit of large principal quantum numbers. Some

consequences of this correspondence are discussed.

II. HIGH ENERGY CROSS SECTIONS

We consider the ionizing collision of an electron with a hydrogen
atom. In a classical analysis of the problem, the binary encounter model
of Gryzinski proceeds by finding first the cross section for energy ex-
change in the laboratory frame between two moving charged particles. We
quote the result7 for the differential cross section for energy exchange
AE and momentum transfer K, averaged over an isotropic distribution of

target electron directions

2ndK dAE
do = = — . (1)
E,K Vo

(Atomic units are used throughout.) This expression is then integrated

over all allowable momentum transfers and all AE from the ionization




energy up to the incident energy El' The model thus assumes that the
collision is such that only the interaction between the two electrons

is important in determining the cross section. The resultant total cross

3,k is proportional to EL for large E..
1 1

The correspondirng ;uantum mechanical result for high energy in-

section

cident electrons can be obcained %y considering the Born approximation.,
In this 1limit the scattering amplitude for ionization is8
.E -~ &
iK-r iK-r
_ 1 12 .3 2 * 3
fo}é' - ﬂ;-j U(rlz)e 4 rio J e wo(r2)wJ€(r2)d r, (2)

where 1 is the scattered electron, 2 is the ejected electron,'ﬁ =‘£° --;'
is the momentum transfer vector,'_f:o the initial,'i' the final incident
electron momentum. M is the ejected electron's momentum, whose initial
and final state are described by wo, %M , respectively. This amplitude,
in the case of hydrogen where U = ;i;-, is seen to be merely a free
particle coulomb amplitude multiplied by a "form factor" associated with
the bound state description. In Eq. (2) it is presumed (so as to cor-
respond to the classical presumption) that the electrons are distinguish-
able, i.e., the wave function has not been antisymmetrized.

The differential cross section is (assuming -- as will generally

be the case -- that after integrating over dQE’ the expression will not

depend on azimuth of k' relative to'ﬁo)

do =ﬁ$‘%|eox(1{)12}€2dxd92 (3)
1K |
K7 » 2
where IEOM (K)|2 = (23;)3 lf e r‘l)o(r)%{(r)d:srl . (4)

It is now easy to see that the classical value is identical to (3) in the

limit that




|€o}€(K)I2 =2 > 6({E - R - v2)
lmv2 :
=1 5 6(-JK2 + M2 A cosB - v,) .
hnvz

Here B is the angle betwezn K and & . (5) used in (3) and integrated

over d92 = 2nrsinBdB, together with eneroy conservation
AE = 1/2 ki -1/2 k'2 = - E, + 1/2 e
or
dAE = #aX
gives
2n dK dAE
e
1 K 2

which is identical with (1). Gryzinski's classical approach requires
full conservation of momentum end energy between the two electrons,
whereas the guantum mechanical gpproximation insists only on energy
conserveation because the nucleus can take up momentum. However, in
the limit when (5) is true, an averaged momentum conservation follows.
That only the magnitude [E‘- 5§| is involved in the conservation of
momentum is a consequence of the averaging over the atomic electron's
angular distribution.

The high energy behavior is obtainable from (3) by noting that
-
iK-r

for very large E vl o+ iK-; can be used

10 K must be small; thus e

in (4), yielding

|€Oa{(K)|2 = K2]<O|Z|J€>|2 .

This when used in (3) can be readily seen to lead to n E/E behavior

for the integrated ionization cross section.

(5)



ITI. CORRESPONDENCE LIMIT

The genesis of Equation (5) can be most easily seen in the ap-

proximation that the ejected electron be descrlbable by a plane wave

1&€ .r

rather than a coulomb wav:function: w&e 4" . In this approxima-

tion

legye (12 = Jogtk = o¢) |2 (6)

is Just the square of the Fourier transform of the bound state wave

- = =
function, evaluated at ¢ = K - ¥ . It can be seen that, aside from a
constant term? which now arises because of the non-orthogonality of
the bound and free wave functions, (6) also leads to a n E/E behavior
in the limit of small momentum transfer or high energy, where
iK-r
e

= 1 + iK-°r.

For the ground state this approximation gives:

19 G p— :
legge (K 2IE 002+ 1]“

For excited states we would have additional complications because of the
different angular momentum states. However, the normalized momentum

space wave functions for a given principal quantum number averaged over

all angular momenta have been shown by FocklO to be

= XY 8 1 1
o (K - ) + 5]

(7) is the correct expression to use for obtaining a classical correspond-
ence. This function becomes sharply peaked as n increases, in fact ac-

quires delta function behaviorll:




5
n+ n’ [x° + =
n
(8)
2.3 [, 2.,8 1 1
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f n Jo 7 n? (x2 + —%
n

Thus in the approximation .mplied by (6), the use of a delta function as
in (5) is correct for large n.

Actually, for any state, no approximations need be made to obtain
the exact EOM(K) in closed form.8 The expression is not very transparent,
but it can be argued that its behavior is at least qualifétively the same
as that given by (7). For example, if we look at the ground state EOK.(K)
for nuclear charge Z # 1, this function also becomes sharply pesked as.

u = Z/ao decreases.12 The expression for En&Q(K) should go smoothly from
its bound state form to the continuum form as n increases. Here by con-
tinuum form we meen that the nucleus is very far away so the collision

will be ordinary elastic electron-electron scattering, for which the quantum
mechanical (exact), Born, and classical cross sections are equal.

If we accept the validity of the Born approximation at sufficiently
high energy, the above remarks imply that the cross section, at a given
energy which is large compared to the binding energy, should go smoothly
from &n E/E behavior to 1/E behavior as n increases. This follows since
(1) produces a %- behavior, and also represents the limiting (fixed
energy) behavior of (3) as n increases, whereas for low n and large enough
El (therefore small K) the cross section has log El/El dependence. This

can be seen to be verified by numerical calculations of Omidvar.13

He
plots both the Born approximation and Gryzinski ionization cross sections
for n = 1 thru 5, and finds that for the higher n, the Born and classical

agree at the higher energies calculated. Of course, since momentum




transfer decreases with increasing energy, we can find an incident
energy such that the logarithmic behavior of the Born epproximation
ig valid for any given n. However, this energy will become increas-
ingly larger,lh and ir the limit the logarithmic behavior no longer
obtains.

These results also give some insight into the problem of
averaging over velocity distributions which have been usedl’6 in con-
nection with the Gryzinski model. In fact what is appropriate is a
weighting of the differential cross section by |€nJ€(K)‘2' That is,
the fact that the bound state momentum is uncertain requires a weight-
ing of the probability of energy exchange at a given momentum transfer;
the logarithmic dependence follows from this uncertainty. For highly
excited states, however, the bound state momentum becomes sharply peaked,
giving validity to the use of a delta function approximation for an
avergged momentum conservation between the two electrons, as in the
Gryzinski model. Restating this argument, the effect of the nucleus
becomes unimportant for large n (the parameter, it should be kept in
mind, is Z/n), and free particle descriptions become approximately valid.

Extension of these arguments to consideration of excitation

cross sections is less straightforward.
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The function hnp2|¢n(p)l2 given by (7) peaks at p =

v, = %—(amomic units). This momentum distribution is very sharply

peaked for large n.
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* .
number of order of unity. Thus El/En v lbnnhs. Relativistic effects

will begin to be important at these energies even for n ~ 5.




