2,771 research outputs found
Recommended from our members
Anelasticity across seismic to tidal timescales: a self-consistent approach
In a pioneering study, Wahr & Bergen developed the widely adopted, pseudo-normal mode framework for predicting the impact of anelastic effects on the Earth's body tides. Lau have recently derived an extended normal mode treatment of the problem (as well as a minor variant of the theory known as the direct solution method) that makes full use of theoretical developments in free oscillation seismology spanning the last quarter century and that avoids a series of assumptions and approximations adopted in the traditional theory for predicting anelastic effects. There are two noteworthy differences between these two theories: (1) the traditional theory only considers perturbations to the eigenmodes of an elastic Earth, whereas the new theory augments this set of modes to include the relaxation modes that arise in anelastic behaviour; and (2) the traditional theory approximates the complex perturbation to the tidal Love number as a scaled version of the complex perturbation to the elastic moduli, whereas the new theory computes the full complex perturbation to each eigenmode. In this study, we highlight the above differences using a series of synthetic calculations, and demonstrate that the traditional theory can introduce significant error in predictions of the complex perturbation to the Love numbers due to anelasticity and the related predictions of tidal lag angles. For the simplified Earth models we adopt, the computed lag angles differ by ∼20 per cent. The assumptions in the traditional theory have important implications for previous studies that use model predictions to correct observables for body tide signals or that analyse observations of body tide deformation to infer mantle anelastic structure. Finally, we also highlight the fundamental difference between apparent attenuation (i.e. attenuation inferred from observations or predicted using the above theories) and intrinsic attenuation (i.e. the material property investigated through experiments), where both are often expressed in terms of lag angles or . In particular, we demonstrate the potentially significant (factor of two or more) bias introduced in estimates of and its frequency dependence in studies that have treated determined from tidal phase lags or measured experimentally as being equal. The observed or theoretically predicted lag angle (or apparent ) differs from the intrinsic, material property due to inertia, self-gravity and effects associated with the energy budget. By accounting for these differences we derive, for a special case, an expression that accurately maps apparent attenuation predicted using the extended normal mode formalism of Lau into intrinsic attenuation. The theory allows for more generalized mappings which may be used to robustly connect observations and predictions of tidal lag angles to results from laboratory experiments of mantle materials.This work was supported by NSF EAR-1464024, NSF EAR-1215061, and Harvard University
A framework for power analysis using a structural equation modelling procedure
BACKGROUND: This paper demonstrates how structural equation modelling (SEM) can be used as a tool to aid in carrying out power analyses. For many complex multivariate designs that are increasingly being employed, power analyses can be difficult to carry out, because the software available lacks sufficient flexibility. Satorra and Saris developed a method for estimating the power of the likelihood ratio test for structural equation models. Whilst the Satorra and Saris approach is familiar to researchers who use the structural equation modelling approach, it is less well known amongst other researchers. The SEM approach can be equivalent to other multivariate statistical tests, and therefore the Satorra and Saris approach to power analysis can be used. METHODS: The covariance matrix, along with a vector of means, relating to the alternative hypothesis is generated. This represents the hypothesised population effects. A model (representing the null hypothesis) is then tested in a structural equation model, using the population parameters as input. An analysis based on the chi-square of this model can provide estimates of the sample size required for different levels of power to reject the null hypothesis. CONCLUSIONS: The SEM based power analysis approach may prove useful for researchers designing research in the health and medical spheres
Influence of Gamma-Ray Emission on the Isotopic Composition of Clouds in the Interstellar Medium
We investigate one mechanism of the change in the isotopic composition of
cosmologically distant clouds of interstellar gas whose matter was subjected
only slightly to star formation processes. According to the standard
cosmological model, the isotopic composition of the gas in such clouds was
formed at the epoch of Big Bang nucleosynthesis and is determined only by the
baryon density in the Universe. The dispersion in the available cloud
composition observations exceeds the errors of individual measurements. This
may indicate that there are mechanisms of the change in the composition of
matter in the Universe after the completion of Big Bang nucleosynthesis. We
have calculated the destruction and production rates of light isotopes (D, 3He,
4He) under the influence of photonuclear reactions triggered by the gamma-ray
emission from active galactic nuclei (AGNs). We investigate the destruction and
production of light elements depending on the spectral characteristics of the
gamma-ray emission. We show that in comparison with previous works, taking into
account the influence of spectral hardness on the photonuclear reaction rates
can increase the characteristic radii of influence of the gamma-ray emission
from AGNs by a factor of 2-8. The high gamma-ray luminosities of AGNs observed
in recent years increase the previous estimates of the characteristic radii by
two orders of magnitude. This may suggest that the influence of the emission
from AGNs on the change in the composition of the medium in the immediate
neighborhood (the host galaxy) has been underestimated.Comment: 13 pages, 13 figures, 3 table
Triton photodisintegration in three-dimensional approach
Two- and three- particles photodisintegration of the triton is investigated
in a three-dimensional (3D) Faddeev approach. For this purpose the Jacobi
momentum vectors for three particles system and spin-isospin quantum numbers of
the individual nucleons are considered. Based on this picture the three-nucleon
Faddeev integral equations with the two-nucleon interaction are formulated
without employing the partial wave decomposition. The single nucleon current as
well as and like exchange currents are used in an appropriate
form to be employed in 3D approach. The exchange currents are derived from AV18
NN force. The two-body t-matrix, Deuteron and Triton wave functions are
calculated in the 3D approach by using AV18 potential. Benchmarks are presented
to compare the total cross section for the two- and three- particles
photodisintegration in the range of . The 3D Faddeev
approach shows promising results
Photodisintegration of the triton with realistic potentials
The process is treated by means of three-body integral
equations employing in their kernel the W-Matrix representation of the
subsystem amplitudes. As compared to the plane wave (Born) approximation the
full solution of the integral equations, which takes into account the final
state interaction, shows at low energies a 24% enhancement. The calculations
are based on the semirealistic Malfliet-Tjon and the realistic Paris and Bonn B
potentials. For comparison with earlier calculations we also present results
for the Yamaguchi potential. In the low-energy region a remarkable potential
dependence is observed, which vanishes at higher energies.Comment: 16 pages REVTeX, 8 postscript figures included, uses epsfig.st
Radiative decay of a massive particle and the non-thermal process in primordial nucleosynthesis
We consider the effects on big bang nucleosynthesis (BBN) of the radiative
decay of a long-lived massive particle. If high-energy photons are emitted
after the BBN epoch ( sec), they may change the abundances of
the light elements through photodissociation processes, which may result in a
significant discrepancy between standard BBN and observation. Taking into
account recent observational and theoretical developments in this field, we
revise our previous study constraining the abundance of the
radiatively-decaying particles. In particular, on the theoretical side, it was
recently claimed that the non-thermal production of Li, which is caused by
the photodissociation of \hefour, most severely constrains the abundance of
the radiatively-decaying particle. We will see, however, it is premature to
emphasize the importance of the non-thermal production of Li because (i)
the theoretical computation of the Li abundance has large uncertainty due
to the lack of the precise understanding of the Li production cross
section, and (ii) the observational data of Li abundance has large errors.Comment: 15 pages, using REVTeX and 3 postscript figure
Geochemical analysis of bulk marine sediment by Inductively Coupled Plasma–Atomic Emission Spectroscopy on board the JOIDES Resolution
Geochemical analyses on board the JOIDES Resolution have been enhanced with the addition of a Jobin-Yvon Ultrace inductively coupled plasma-atomic emission spectrometer (ICP-AES) as an upgrade from the previous X-ray fluorescence facility. During Leg 199, we sought to both challenge and utilize the capabilities of the ICP-AES in order to provide an extensive bulk-sediment geochemical database during the cruise. These near real-time analyses were then used to help characterize the recovered sedimentary sequences, calculate mass accumulation rates of the different sedimentary components, and assist with cruise and postcruise sampling requests. The general procedures, sample preparation techniques, and basic protocol for ICP-AES analyses on board ship are outlined by Murray et al. (2000) in Ocean Drilling Program Tech Note, 29. We expand on those concepts and offer suggestions for ICP-AES methodology, calibration by standard reference materials, data reduction procedures, and challenges that are specific to the analysis of bulk-sediment samples. During Leg 199, we employed an extensive bulk-sediment analytical program of ~600 samples of varying lithologies, thereby providing several opportunities for refinement of techniques. We also discuss some difficulties and challenges that were faced and suggest how to alleviate such occurrences for sedimentary chemical analyses during future legs
Quality science from quality measurement: The role of measurement type with respect to replication and effect size magnitude in psychological research
Copyright: © 2018 Kornbrot et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.The quality of psychological studies is currently a major concern. The Many Labs Project (MLP) and the Open-Science-Collaboration (OSC) have collected key data on replicability and statistical effect sizes. We build on this work by investigating the role played by three measurement types: ratings, proportions and unbounded (measures without conceptual upper limits, e.g. time). Both replicability and effect sizes are dependent on the amount of variability due to extraneous factors. We predicted that the role of such extraneous factors might depend on measurement type, and would be greatest for ratings, intermediate for proportions and least for unbounded. Our results support this conjecture. OSC replication rates for unbounded, 43% and proportion 40% combined are reliably higher than those for ratings at 20% (effect size, w = .20). MLP replication rates for the original studies are: pro- portion = .74, ratings = .40 (effect size w = .33). Original effect sizes (Cohen’s d) are highest for: unbounded OSC cognitive = 1.45, OSC social = .90); next for proportions (OSC cogni- tive = 1.01, OSC social = .84, MLP = .82); and lowest for ratings (OSC social = .64, MLP = .31). These findings are of key importance to scientific methodology and design, even if the reasons for their occurrence are still at the level of conjecture.Peer reviewe
Photonuclear Reactions of Three-Nucleon Systems
We discuss the available data for the differential and the total cross
section for the photodisintegration of He and H and the corresponding
inverse reactions below MeV by comparing with our calculations
using realistic interactions. The theoretical results agree within the
errorbars with the data for the total cross sections. Excellent agreement is
achieved for the angular distribution in case of He, whereas for H a
discrepancy between theory and experiment is found.Comment: 11 pages (twocolumn), 12 postscript figures included, uses psfig,
RevTe
Electromagnetic response functions of few-nucleon systems
Inclusive electromagnetic reactions in few-nucleon systems are studied basing
on accurate three- and four-body calculations. The longitudinal 4He(e,e')
response function obtained at q\le 600 MeV/c completely agrees with experiment.
The exact 4He spectral function obtained in a semirealistic potential model is
presented, and the accuracy of the quasielastic response calculated with its
help is assessed, as well as the accuracy of some simpler approximations for
the response. The photodisintegration cross section of 3He obtained with the
realistic AV14 NN force plus UrbanaVIII NNN force agrees with experiment. It is
shown that this cross section is very sensitive to underlying nuclear dynamics
in the E_\gamma\simeq 70-100 MeV region. In particular, the NNN nuclear force
clearly manifests itself in this region.Comment: 10 pages, Latex, style file is included, 7 ps figures, to appear in
Proc. of the 2nd Int. Conf. on Perspectives in Hadronic Physics, ITCP,
Triest, May 1999, World Sci., Singapor
- …
