We investigate one mechanism of the change in the isotopic composition of
cosmologically distant clouds of interstellar gas whose matter was subjected
only slightly to star formation processes. According to the standard
cosmological model, the isotopic composition of the gas in such clouds was
formed at the epoch of Big Bang nucleosynthesis and is determined only by the
baryon density in the Universe. The dispersion in the available cloud
composition observations exceeds the errors of individual measurements. This
may indicate that there are mechanisms of the change in the composition of
matter in the Universe after the completion of Big Bang nucleosynthesis. We
have calculated the destruction and production rates of light isotopes (D, 3He,
4He) under the influence of photonuclear reactions triggered by the gamma-ray
emission from active galactic nuclei (AGNs). We investigate the destruction and
production of light elements depending on the spectral characteristics of the
gamma-ray emission. We show that in comparison with previous works, taking into
account the influence of spectral hardness on the photonuclear reaction rates
can increase the characteristic radii of influence of the gamma-ray emission
from AGNs by a factor of 2-8. The high gamma-ray luminosities of AGNs observed
in recent years increase the previous estimates of the characteristic radii by
two orders of magnitude. This may suggest that the influence of the emission
from AGNs on the change in the composition of the medium in the immediate
neighborhood (the host galaxy) has been underestimated.Comment: 13 pages, 13 figures, 3 table