410 research outputs found
Multiscale approach of mechanical behaviour of SiC/SiC composites: Elastic behaviour at the scale of the tow
SiC/SiC composites are candidates for structural applications at elevated temperatures in the context of the development of the 4th generation of nuclear reactors. A multiscale approach is under development to construct a predictive modelling of their complex mechanical behaviour due to their heterogeneous microstructure. This approach is based on two scale transitions: from the fibres/matrix microstructure to the tow and from the tow to the woven composite, each scale presenting a significant residual porosity. This paper focuses on the first scale transition and on the modelling of the elastic behaviour of the tow at room temperature. A microstructural investigation of several tows in a 2D SiC/SiC specimen has been conducted using scanning electron microscopy to get statistical data on microstructural characteristics by image analysis in order to generate a virtual microstructure. The elastic problem of homogenisation is numerically solved by means of finite element techniques. The simulations performed on various volumes show noticeable fluctuations of the apparent behaviour: so separation of length scales is not satisfied in this material. Nevertheless, this problem is neglected in a first approximation and the homogeneous equivalent behaviour is evaluated by averaging the apparent behaviours of several volume elements – smaller than the Representative Volume Element (RVE) – called Statistical Volume Elements (SVEs). Finally, influence of porosity and pores’ morphology is quantified
Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids
We study both experimentally and theoretically the rheological behavior of
isotropic bidisperse suspensions of noncolloidal particles in yield stress
fluids. We focus on materials in which noncolloidal particles interact with the
suspending fluid only through hydrodynamical interactions. We observe that both
the elastic modulus and yield stress of bidisperse suspensions are lower than
those of monodisperse suspensions of same solid volume fraction. Moreover, we
show that the dimensionless yield stress of such suspensions is linked to their
dimensionless elastic modulus and to their solid volume fraction through the
simple equation of Chateau et al.[J. rheol. 52, 489-506 (2008)]. We also show
that the effect of the particle size heterogeneity can be described by means of
a packing model developed to estimate random loose packing of assemblies of dry
particles. All these observations finally allow us to propose simple closed
form estimates for both the elastic modulus and the yield stress of bidisperse
suspensions: while the elastic modulus is a function of the reduced volume
fraction only, where is the estimated random loose
packing, the yield stress is a function of both the volume fraction and
the reduced volume fraction
Inefficient Vaginal Transmission of Tenofovir-Resistant HIV-1
Transmission of drug-resistant HIV has been postulated to be a threat to current first-line antiretroviral therapy (ART) regimens and the efficacy of several antiretroviral-based preexposure prophylaxis (PrEP) strategies being tested. Here we evaluated the effect of the common tenofovir (TFV) resistance mutation K65R on vaginal HIV transmission. Our results demonstrate that despite no overt loss of overall replication competence in vivo, this mutation results in significantly reduced mucosal transmission. When transmitted, the mutant virus eventually reverted to the wild type in 2 of 3 animals examined
Simulating Plasmon Resonances of Gold Nanoparticles with Bipyramidal Shapes by Boundary Element Methods
Computational modeling and accurate simulations of localized surface plasmon resonance (LSPR) absorption properties are reported for gold nanobipyramids (GNBs), a class of metal nanoparticle that features highly tunable, geometry-dependent optical properties. GNB bicone models with spherical tips performed best in reproducing experimental LSPR spectra while the comparison with other geometrical models provided a fundamental understanding of base shapes and tip effects on the optical properties of GNBs. Our results demonstrated the importance of averaging all geometrical parameters determined from transmission electron microscopy images to build representative models of GNBs. By assessing the performances of LSPR absorption spectra simulations based on a quasi-static approximation, we provided an applicability range of this approach as a function of the nanoparticle size, paving the way to the theoretical study of the coupling between molecular electron densities and metal nanoparticles in GNB-based nanohybrid systems, with potential applications in the design of nanomaterials for bioimaging, optics and photocatalysis
Recommended from our members
Seafloor seismicity, Antarctic ice-sounds, cetacean vocalizations and long-term ambient sound in the Indian Ocean basin
This paper presents the results from the Deflo-hydroacoustic experiment in the Southern Indian Ocean using three autonomous underwater hydrophones, complemented by two permanent hydroacoustic stations. The array monitored for 14 months, from November 2006 to December 2007, a 3000 x 3000 km wide area, encompassing large segments of the three Indian spreading ridges that meet at the Indian Triple Junction. A catalogue of 11 105 acoustic events is derived from the recorded data, of which 55 per cent are located from three hydrophones, 38 per cent from 4, 6 per cent from five and less than 1 per cent by six hydrophones. From a comparison with land-based seismic catalogues, the smallest detected earthquakes are m[subscript]b 2.6 in size, the range of recorded magnitudes is about twice that of land-based networks and the number of detected events is 5-16 times larger. Seismicity patterns vary between the three spreading ridges, with activity mainly focused on transform faults along the fast spreading Southeast Indian Ridge and more evenly distributed along spreading segments and transforms on the slow spreading Central and ultra-slow spreading Southwest Indian ridges; the Central Indian Ridge is the most active of the three with an average of 1.9 events/100 km/month. Along the Sunda Trench, acoustic events mostly radiate from the inner wall of the trench and show a 200-km-long seismic gap between 2 °S and the Equator. The array also detected more than 3600 cryogenic events, with different seasonal trends observed for events from the Antarctic margin, compared to those from drifting icebergs at lower (up to 50°S) latitudes. Vocalizations of five species and subspecies of large baleen whales were also observed and exhibit clear seasonal variability. On the three autonomous hydrophones, whale vocalizations dominate sound levels in the 20-30 and 100 Hz frequency bands, whereas earthquakes and ice tremor are a dominant source of ambient sound at frequencies < 20 Hz.Keywords: Mid-ocean ridge processes, Indian Ocean, Hydrogeophysics, Acoustic propertie
Effective suckling in relation to naked maternal-infant body contact in the first hour of life: an observation study
Background
Best practice guidelines to promote breastfeeding suggest that (i) mothers hold their babies in naked body contact immediately after birth, (ii) babies remain undisturbed for at least one hour and (iii) breastfeeding assistance be offered during this period. Few studies have closely observed the implementation of these guidelines in practice. We sought to evaluate these practices on suckling achievement within the first hour after birth.
Methods
Observations of seventy-eight mother-baby dyads recorded newborn feeding behaviours, the help received by mothers and birthing room practices each minute, for sixty minutes.
Results
Duration of naked body contact between mothers and their newborn babies varied widely from 1 to 60 minutes, as did commencement of suckling (range = 10 to 60 minutes). Naked maternal-infant body contact immediately after birth, uninterrupted for at least thirty minutes did not predict effective suckling within the first hour of birth. Newborns were four times more likely to sustain deep rhythmical suckling when their chin made contact with their mother’s breast as they approached the nipple (OR 3.8; CI 1.03 - 14) and if their mothers had given birth previously (OR 6.7; CI 1.35 - 33). Infants who had any naso-oropharyngeal suctioning administered at birth were six times less likely to suckle effectively (OR .176; CI .04 - .9).
Conclusion
Effective suckling within the first hour of life was associated with a collection of practices including infants positioned so their chin can instinctively nudge the underside of their mother’s breast as they approach to grasp the nipple and attach to suckle. The best type of assistance provided in the birthing room that enables newborns to sustain an effective latch was paying attention to newborn feeding behaviours and not administering naso-oropharyngeal suction routinely
- …