3,550 research outputs found

    Spacetime Defects: von K\'arm\'an vortex street like configurations

    Get PDF
    A special arrangement of spinning strings with dislocations similar to a von K\'arm\'an vortex street is studied. We numerically solve the geodesic equations for the special case of a test particle moving along twoinfinite rows of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres

    The Chagos Islands cases: the empire strikes back

    Get PDF
    Good governance requires the accommodation of multiple interests in the cause of decision making. However, undue regard for particular sectional interests can take their toll upon public faith in government administration. Historically, broad conceptions of the good of the commonwealth were employed to outweigh the interests of groups that resisted colonisation. In the decision making of the British Empire, the standard approach for justifying the marginalisation of the interests of colonised groups was that they were uncivilised and that particular hardships were the price to be paid for bringing to them the imperial dividend of industrial society. It is widely assumed that with the dismantling of the British Empire, such impulses and their accompanying jurisprudence became a thing of the past. Even as decolonisation proceeded apace after the Second World War, however, the United Kingdom maintained control of strategically important islands with a view towards sustaining its global role. In an infamous example from this twilight period of empire, in the 1960s imperial interests were used to justify the expulsion of the Chagos islanders from the British Indian Ocean Territory (BIOT). Into the twenty-first century, this forced elision of the UK’s interests with the imperial “common good” continues to take centre stage in courtroom battles over the islanders’ rights, being cited before domestic and international tribunals in order to maintain the Chagossians’ exclusion from their homeland. This article considers the new jurisprudence of imperialism which has emerged in a string of decisions which have continued to marginalise the Chagossians’ interests

    Quantum key distribution using a triggered quantum dot source emitting near 1.3 microns

    Full text link
    We report the distribution of a cryptographic key, secure from photon number splitting attacks, over 35 km of optical fiber using single photons from an InAs quantum dot emitting ~1.3 microns in a pillar microcavity. Using below GaAs-bandgap optical excitation, we demonstrate suppression of multiphoton emission to 10% of the Poissonian level without detector dark count subtraction. The source is incorporated into a phase encoded interferometric scheme implementing the BB84 protocol for key distribution over standard telecommunication optical fiber. We show a transmission distance advantage over that possible with (length-optimized) uniform intensity weak coherent pulses at 1310 nm in the same system.Comment: 4 pages, 4 figure

    Biot-Savart-like law in electrostatics

    Get PDF
    The Biot-Savart law is a well-known and powerful theoretical tool used to calculate magnetic fields due to currents in magnetostatics. We extend the range of applicability and the formal structure of the Biot-Savart law to electrostatics by deriving a Biot-Savart-like law suitable for calculating electric fields. We show that, under certain circumstances, the traditional Dirichlet problem can be mapped onto a much simpler Biot-Savart-like problem. We find an integral expression for the electric field due to an arbitrarily shaped, planar region kept at a fixed electric potential, in an otherwise grounded plane. As a by-product we present a very simple formula to compute the field produced in the plane defined by such a region. We illustrate the usefulness of our approach by calculating the electric field produced by planar regions of a few nontrivial shapes.Comment: 14 pages, 6 figures, RevTex, accepted for publication in the European Journal of Physic

    Numerical study of a non-equilibrium interface model

    Full text link
    We have carried out extensive computer simulations of one-dimensional models related to the low noise (solid-on-solid) non-equilibrium interface of a two dimensional anchored Toom model with unbiased and biased noise. For the unbiased case the computed fluctuations of the interface in this limit provide new numerical evidence for the logarithmic correction to the subnormal L^(1/2) variance which was predicted by the dynamic renormalization group calculations on the modified Edwards-Wilkinson equation. In the biased case the simulations are in close quantitative agreement with the predictions of the Collective Variable Approximation (CVA), which gives the same L^(2/3) behavior of the variance as the KPZ equation.Comment: 15 pages revtex, 4 Postscript Figure

    A Study of Activated Processes in Soft Sphere Glass

    Full text link
    On the basis of long simulations of a binary mixture of soft spheres just below the glass transition, we make an exploratory study of the activated processes that contribute to the dynamics. We concentrate on statistical measures of the size of the activated processes.Comment: 17 pages, 9 postscript figures with epsf, uses harvmac.te

    All electromagnetic form factors

    Full text link
    The electromagnetic form factors of spin-1/2 particles are known, but due to historical reasons only half of them are found in many textbooks. Given the importance of the general result, its model independence, its connection to discrete symmetries and their violations we made an effort to derive and present the general result based only on the knowledge of Dirac equation. We discuss the phenomenology connected directly with the form factors, and spin precession in external fields including time reversal violating terms. We apply the formalism to spin-flip synchrotron radiation and suggest pedagogical projects.Comment: Latex, 22 page

    Polymer translocation through a nanopore under an applied external field

    Get PDF
    We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the 2D fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength EE, length of the chain NN, and length of the pore LL on forced translocation. As our main result, we find a crossover scaling for the translocation time τ\tau with the chain length from τ∌N2Îœ\tau \sim N^{2\nu} for relatively short polymers to τ∌N1+Îœ\tau \sim N^{1 + \nu} for longer chains, where Îœ\nu is the Flory exponent. We demonstrate that this crossover is due to the change in the dependence of the translocation velocity v on the chain length. For relatively short chains v∌N−Μv \sim N^{- \nu}, which crosses over to v∌N−1v \sim N^{- 1} for long polymers. The reason for this is that with increasing NN there is a high density of segments near the exit of the pore, which slows down the translocation process due to slow relaxation of the chain. For the case of a long nanopore for which R∄R_\parallel , the radius of gyration RgR_{g} along the pore, is smaller than the pore length, we find no clear scaling of the translocation time with the chain length. For large NN, however, the asymptotic scaling τ∌N1+Îœ\tau \sim N^{1 + \nu} is recovered. In this regime, τ\tau is almost independent of LL. We have previously found that for a polymer, which is initially placed in the middle of the pore, there is a minimum in the escape time for R∄≈LR_\parallel \approx L. We show here that this minimum persists for a weak fields EE such that ELEL is less than some critical value, but vanishes for large values of ELEL.Comment: 25 Pages, 10 figures. Submitted to J. Chem. Phys. J. Chem. Phys. 124, in press (2006

    Stabilization of single-electron pumps by high magnetic fields

    Full text link
    We study the effect of perpendicular magnetic fields on a single-electron system with a strongly time-dependent electrostatic potential. Continuous improvements to the current quantization in these electron pumps are revealed by high-resolution measurements. Simulations show that the sensitivity of tunnel rates to the barrier potential is enhanced, stabilizing particular charge states. Nonadiabatic excitations are also suppressed due to a reduced sensitivity of the Fock-Darwin states to electrostatic potential. The combination of these effects leads to significantly more accurate current quantization
    • 

    corecore