22,119 research outputs found
Relativistic quantum plasma dispersion functions
Relativistic quantum plasma dispersion functions are defined and the
longitudinal and transverse response functions for an electron (plus positron)
gas are written in terms of them. The dispersion is separated into
Landau-damping, pair-creation and dissipationless regimes. Explicit forms are
given for the RQPDFs in the cases of a completely degenerate distribution and a
nondegenerate thermal (J\"uttner) distribution. Particular emphasis is placed
on the relation between dissipation and dispersion, with the dissipation
treated in terms of the imaginary parts of RQPDFs. Comparing the dissipation
calculated in this way with the existing treatments leads to the identification
of errors in the literature, which we correct. We also comment on a controversy
as to whether the dispersion curves in a superdense plasma pass through the
region where pair creation is allowed.Comment: 16 pages, 1 figur
Langmuir Wave Generation Through A Neutrino Beam Instability
A standard version of a kinetic instability for the generation of Langmuir
waves by a beam of electrons is adapted to describe the analogous instability
due to a beam of neutrinos. The interaction between a Langmuir wave and a
neutrino is treated in the one-loop approximation to lowest order in an
expansion in in the standard electroweak model.
It is shown that this kinetic instability is far too weak to occur in a
suggested application to the reheating of the plasma behind a stalled shock in
a type II supernova (SN). This theory is also used to test the validity of a
previous analysis of a reactive neutrino beam instability and various
shortcomings of this theory are noted. In particular, it is noted that
relativistic plasma effects have a significant effect on the calculated growth
rates, and that any theoretical description of neutrino-plasma interactions
must be based directly on the electroweak theory. The basic scalings discussed
in this paper suggest that a more complete investigation of neutrino-plasma
processes should be undertaken to look for an efficient process capable of
driving the stalled shock of a type II SN.Comment: 23 pages, incl. 5 postscript figure
Travelling Salesman Problem with a Center
We study a travelling salesman problem where the path is optimized with a
cost function that includes its length as well as a certain measure of
its distance from the geometrical center of the graph. Using simulated
annealing (SA) we show that such a problem has a transition point that
separates two phases differing in the scaling behaviour of and , in
efficiency of SA, and in the shape of minimal paths.Comment: 4 pages, minor changes, accepted in Phys.Rev.
Quantum Control of Qubits and Atomic Motion Using Ultrafast Laser Pulses
Pulsed lasers offer significant advantages over CW lasers in the coherent
control of qubits. Here we review the theoretical and experimental aspects of
controlling the internal and external states of individual trapped atoms with
pulse trains. Two distinct regimes of laser intensity are identified. When the
pulses are sufficiently weak that the Rabi frequency is much smaller
than the trap frequency \otrap, sideband transitions can be addressed and
atom-atom entanglement can be accomplished in much the same way as with CW
lasers. By contrast, if the pulses are very strong (\Omega \gg \otrap),
impulsive spin-dependent kicks can be combined to create entangling gates which
are much faster than a trap period. These fast entangling gates should work
outside of the Lamb-Dicke regime and be insensitive to thermal atomic motion.Comment: 16 pages, 15 figure
Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry
We have performed precision electrostatic calibrations in the sphere-plane
geometry and observed anomalous behavior. Namely, the scaling exponent of the
electrostatic signal with distance was found to be smaller than expected on the
basis of the pure Coulombian contribution and the residual potential found to
be distance dependent. We argue that these findings affect the accuracy of the
electrostatic calibrations and invite reanalysis of previous determinations of
the Casimir force.Comment: 4 pages, 4 figure
Engineering Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances
Electromagnetic properties of periodic two-dimensional sub-wavelength
structures consisting of closely-packed inclusions of materials with negative
dielectric permittivity in a dielectric host with positive
can be engineered using the concept of multiple electrostatic
resonances. Fully electromagnetic solutions of Maxwell's equations reveal
multiple wave propagation bands, with the wavelengths much longer than the
nanostructure period. It is shown that some of these bands are described using
the quasi-static theory of the effective dielectric permittivity
, and are independent of the nanostructure period. Those bands
exhibit multiple cutoffs and resonances which are found to be related to each
other through a duality condition. An additional propagation band characterized
by a negative magnetic permeability develops when a magnetic moment is induced
in a given nano-particle by its neighbors. Imaging with sub-wavelength
resolution in that band is demonstrated
Maximal planar networks with large clustering coefficient and power-law degree distribution
In this article, we propose a simple rule that generates scale-free networks
with very large clustering coefficient and very small average distance. These
networks are called {\bf Random Apollonian Networks}(RAN) as they can be
considered as a variation of Apollonian networks. We obtain the analytic
results of power-law exponent and clustering coefficient
, which agree very well with the
simulation results. We prove that the increasing tendency of average distance
of RAN is a little slower than the logarithm of the number of nodes in RAN.
Since most real-life networks are both scale-free and small-world networks, RAN
may perform well in mimicking the reality. The RAN possess hierarchical
structure as that in accord with the observations of many
real-life networks. In addition, we prove that RAN are maximal planar networks,
which are of particular practicability for layout of printed circuits and so
on. The percolation and epidemic spreading process are also studies and the
comparison between RAN and Barab\'{a}si-Albert(BA) as well as Newman-Watts(NW)
networks are shown. We find that, when the network order (the total number
of nodes) is relatively small(as ), the performance of RAN under
intentional attack is not sensitive to , while that of BA networks is much
affected by . And the diseases spread slower in RAN than BA networks during
the outbreaks, indicating that the large clustering coefficient may slower the
spreading velocity especially in the outbreaks.Comment: 13 pages, 10 figure
Recommended from our members
Selective and highly efficient dye scavenging by a pH-responsive molecular hydrogelator
A structurally simple low molecular weight hydrogelator derived from isophthalic acid forms robust pH-responsive hydrogels capable of highly efficient and selective dye adsorption
Statistical Theory of Parity Nonconservation in Compound Nuclei
We present the first application of statistical spectroscopy to study the
root-mean-square value of the parity nonconserving (PNC) interaction matrix
element M determined experimentally by scattering longitudinally polarized
neutrons from compound nuclei. Our effective PNC interaction consists of a
standard two-body meson-exchange piece and a doorway term to account for
spin-flip excitations. Strength functions are calculated using realistic
single-particle energies and a residual strong interaction adjusted to fit the
experimental density of states for the targets, ^{238} U for A\sim 230 and
^{104,105,106,108} Pd for A\sim 100. Using the standard Desplanques, Donoghue,
and Holstein estimates of the weak PNC meson-nucleon coupling constants, we
find that M is about a factor of 3 smaller than the experimental value for
^{238} U and about a factor of 1.7 smaller for Pd. The significance of this
result for refining the empirical determination of the weak coupling constants
is discussed.Comment: Latex file, no Fig
Modelling high redshift Lyman α emitters
We present a new model for high redshift Lyman α emitters (LAEs) in the cosmological context which takes into account the resonant scattering of Lyα photons through expanding gas. The GALICS semi-analytic model provides us with the physical properties of a large sample of high redshift galaxies. We implement, in post-processing, a gas outflow model for each galaxy based on simple scaling arguments. The coupling with a library of numerical experiments of Lyα transfer through expanding (or static) dusty shells of gas allows us to derive the Lyα escape fraction and profile of each galaxy. Results obtained with this new approach are compared with simpler models often used in the literature. The predicted distribution of Lyα photons escape fraction shows that galaxies with a low star formation rate (SFR) have a fesc of the order of unity, suggesting that, for those objects, Lyα may be used to trace the SFR assuming a given conversion law. In galaxies forming stars intensely, the escape fraction spans the whole range from 0 to 1. The model is able to get a good match to the ultraviolet (UV) and Lyα luminosity function data at 3 < z < 5. We find that we are in good agreement with both the bright Lyα data and the faint LAE population observed by Rauch et al. at z= 3 whereas a simpler constant Lyαescape fraction model fails to do so. Most of the Lyα profiles of our LAEs are redshifted by the diffusion in the expanding gas which suppresses intergalactic medium absorption and scattering. The bulk of the observed Lyα equivalent width (EW) distribution is recovered by our model, but we fail to obtain the very large values sometimes detected. Our predictions for stellar masses and UV luminosity functions of LAEs show a satisfactory agreement with observational estimates. The UV-brightest galaxies are found to show only low Lyα EWs in our model, as it is reported by many observations of high redshift LAEs. We interpret this effect as the joint consequence of old stellar populations hosted by UV-bright galaxies, and high H i column densities that we predict for these objects, which quench preferentially resonant Lyα photons via dust extinctio
- …
