22,119 research outputs found

    Relativistic quantum plasma dispersion functions

    Full text link
    Relativistic quantum plasma dispersion functions are defined and the longitudinal and transverse response functions for an electron (plus positron) gas are written in terms of them. The dispersion is separated into Landau-damping, pair-creation and dissipationless regimes. Explicit forms are given for the RQPDFs in the cases of a completely degenerate distribution and a nondegenerate thermal (J\"uttner) distribution. Particular emphasis is placed on the relation between dissipation and dispersion, with the dissipation treated in terms of the imaginary parts of RQPDFs. Comparing the dissipation calculated in this way with the existing treatments leads to the identification of errors in the literature, which we correct. We also comment on a controversy as to whether the dispersion curves in a superdense plasma pass through the region where pair creation is allowed.Comment: 16 pages, 1 figur

    Langmuir Wave Generation Through A Neutrino Beam Instability

    Get PDF
    A standard version of a kinetic instability for the generation of Langmuir waves by a beam of electrons is adapted to describe the analogous instability due to a beam of neutrinos. The interaction between a Langmuir wave and a neutrino is treated in the one-loop approximation to lowest order in an expansion in 1/MW21/M_W^2 in the standard electroweak model. It is shown that this kinetic instability is far too weak to occur in a suggested application to the reheating of the plasma behind a stalled shock in a type II supernova (SN). This theory is also used to test the validity of a previous analysis of a reactive neutrino beam instability and various shortcomings of this theory are noted. In particular, it is noted that relativistic plasma effects have a significant effect on the calculated growth rates, and that any theoretical description of neutrino-plasma interactions must be based directly on the electroweak theory. The basic scalings discussed in this paper suggest that a more complete investigation of neutrino-plasma processes should be undertaken to look for an efficient process capable of driving the stalled shock of a type II SN.Comment: 23 pages, incl. 5 postscript figure

    Travelling Salesman Problem with a Center

    Full text link
    We study a travelling salesman problem where the path is optimized with a cost function that includes its length LL as well as a certain measure CC of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behaviour of LL and CC, in efficiency of SA, and in the shape of minimal paths.Comment: 4 pages, minor changes, accepted in Phys.Rev.

    Quantum Control of Qubits and Atomic Motion Using Ultrafast Laser Pulses

    Full text link
    Pulsed lasers offer significant advantages over CW lasers in the coherent control of qubits. Here we review the theoretical and experimental aspects of controlling the internal and external states of individual trapped atoms with pulse trains. Two distinct regimes of laser intensity are identified. When the pulses are sufficiently weak that the Rabi frequency Ω\Omega is much smaller than the trap frequency \otrap, sideband transitions can be addressed and atom-atom entanglement can be accomplished in much the same way as with CW lasers. By contrast, if the pulses are very strong (\Omega \gg \otrap), impulsive spin-dependent kicks can be combined to create entangling gates which are much faster than a trap period. These fast entangling gates should work outside of the Lamb-Dicke regime and be insensitive to thermal atomic motion.Comment: 16 pages, 15 figure

    Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry

    Get PDF
    We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis of previous determinations of the Casimir force.Comment: 4 pages, 4 figure

    Engineering Electromagnetic Properties of Periodic Nanostructures Using Electrostatic Resonances

    Full text link
    Electromagnetic properties of periodic two-dimensional sub-wavelength structures consisting of closely-packed inclusions of materials with negative dielectric permittivity ϵ\epsilon in a dielectric host with positive ϵh\epsilon_h can be engineered using the concept of multiple electrostatic resonances. Fully electromagnetic solutions of Maxwell's equations reveal multiple wave propagation bands, with the wavelengths much longer than the nanostructure period. It is shown that some of these bands are described using the quasi-static theory of the effective dielectric permittivity ϵqs\epsilon_{qs}, and are independent of the nanostructure period. Those bands exhibit multiple cutoffs and resonances which are found to be related to each other through a duality condition. An additional propagation band characterized by a negative magnetic permeability develops when a magnetic moment is induced in a given nano-particle by its neighbors. Imaging with sub-wavelength resolution in that band is demonstrated

    Maximal planar networks with large clustering coefficient and power-law degree distribution

    Full text link
    In this article, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called {\bf Random Apollonian Networks}(RAN) as they can be considered as a variation of Apollonian networks. We obtain the analytic results of power-law exponent γ=3\gamma =3 and clustering coefficient C=46/336ln3/20.74C={46/3}-36\texttt{ln}{3/2}\approx 0.74, which agree very well with the simulation results. We prove that the increasing tendency of average distance of RAN is a little slower than the logarithm of the number of nodes in RAN. Since most real-life networks are both scale-free and small-world networks, RAN may perform well in mimicking the reality. The RAN possess hierarchical structure as C(k)k1C(k)\sim k^{-1} that in accord with the observations of many real-life networks. In addition, we prove that RAN are maximal planar networks, which are of particular practicability for layout of printed circuits and so on. The percolation and epidemic spreading process are also studies and the comparison between RAN and Barab\'{a}si-Albert(BA) as well as Newman-Watts(NW) networks are shown. We find that, when the network order NN(the total number of nodes) is relatively small(as N104N\sim 10^4), the performance of RAN under intentional attack is not sensitive to NN, while that of BA networks is much affected by NN. And the diseases spread slower in RAN than BA networks during the outbreaks, indicating that the large clustering coefficient may slower the spreading velocity especially in the outbreaks.Comment: 13 pages, 10 figure

    Statistical Theory of Parity Nonconservation in Compound Nuclei

    Get PDF
    We present the first application of statistical spectroscopy to study the root-mean-square value of the parity nonconserving (PNC) interaction matrix element M determined experimentally by scattering longitudinally polarized neutrons from compound nuclei. Our effective PNC interaction consists of a standard two-body meson-exchange piece and a doorway term to account for spin-flip excitations. Strength functions are calculated using realistic single-particle energies and a residual strong interaction adjusted to fit the experimental density of states for the targets, ^{238} U for A\sim 230 and ^{104,105,106,108} Pd for A\sim 100. Using the standard Desplanques, Donoghue, and Holstein estimates of the weak PNC meson-nucleon coupling constants, we find that M is about a factor of 3 smaller than the experimental value for ^{238} U and about a factor of 1.7 smaller for Pd. The significance of this result for refining the empirical determination of the weak coupling constants is discussed.Comment: Latex file, no Fig

    Modelling high redshift Lyman α emitters

    Get PDF
    We present a new model for high redshift Lyman α emitters (LAEs) in the cosmological context which takes into account the resonant scattering of Lyα photons through expanding gas. The GALICS semi-analytic model provides us with the physical properties of a large sample of high redshift galaxies. We implement, in post-processing, a gas outflow model for each galaxy based on simple scaling arguments. The coupling with a library of numerical experiments of Lyα transfer through expanding (or static) dusty shells of gas allows us to derive the Lyα escape fraction and profile of each galaxy. Results obtained with this new approach are compared with simpler models often used in the literature. The predicted distribution of Lyα photons escape fraction shows that galaxies with a low star formation rate (SFR) have a fesc of the order of unity, suggesting that, for those objects, Lyα may be used to trace the SFR assuming a given conversion law. In galaxies forming stars intensely, the escape fraction spans the whole range from 0 to 1. The model is able to get a good match to the ultraviolet (UV) and Lyα luminosity function data at 3 < z < 5. We find that we are in good agreement with both the bright Lyα data and the faint LAE population observed by Rauch et al. at z= 3 whereas a simpler constant Lyαescape fraction model fails to do so. Most of the Lyα profiles of our LAEs are redshifted by the diffusion in the expanding gas which suppresses intergalactic medium absorption and scattering. The bulk of the observed Lyα equivalent width (EW) distribution is recovered by our model, but we fail to obtain the very large values sometimes detected. Our predictions for stellar masses and UV luminosity functions of LAEs show a satisfactory agreement with observational estimates. The UV-brightest galaxies are found to show only low Lyα EWs in our model, as it is reported by many observations of high redshift LAEs. We interpret this effect as the joint consequence of old stellar populations hosted by UV-bright galaxies, and high H i column densities that we predict for these objects, which quench preferentially resonant Lyα photons via dust extinctio
    corecore