12 research outputs found
International outbreak of Salmonella Oranienburg due to German chocolate
BACKGROUND: This report describes a large international chocolate-associated Salmonella outbreak originating from Germany. METHODS: We conducted epidemiologic investigations including a case-control study, and food safety investigations. Salmonella (S.) Oranienburg isolates were subtyped by the use of pulsed-field gel electrophoresis (PFGE). RESULTS: From 1 October 2001 through 24 March 2002, an estimated excess of 439 S. Oranienburg notifications was registered in Germany. Simultaneously, an increase in S. Oranienburg infections was noted in other European countries in the Enter-net surveillance network. In a multistate matched case-control study in Germany, daily consumption of chocolate (matched odds ratio [MOR]: 4.8; 95% confidence interval [CI]: 1.3–26.5), having shopped at a large chain of discount grocery stores (MOR: 4.2; CI: 1.2–23.0), and consumption of chocolate purchased there (MOR: 5.0; CI: 1.1–47.0) were associated with illness. Subsequently, two brands from the same company, one exclusively produced for that chain, tested positive for S. Oranienburg. In two other European countries and in Canada chocolate from company A was ascertained that also contained S. Oranienburg. Isolates from humans and from chocolates had indistinguishable PFGE profiles. No source or point of contamination was identified. Epidemiological identification of chocolate as a vehicle of infections required two months, and was facilitated by proxy measures. CONCLUSIONS: Despite the use of improved production technologies, the chocolate industry continues to carry a small risk of manufacturing Salmonella-containing products. Particularly in diffuse outbreak-settings, clear associations with surrogates of exposure should suffice to trigger public health action. Networks such as Enter-net have become invaluable for facilitating rapid and appropriate management of international outbreaks
The GUINEVERE project at the VENUS facility
Proc. on CD Rom log315International audienceThe GUINEVERE project is an international project in the framework of IP-EUROTRANS, the FP6 program which aims at addressing the main issues for ADS development in the framework of partitioning and transmutation for nuclear waste volume and radiotoxicity reduction. The GUINEVERE project is carried out in the context of domain 2 of IP-EUROTRANS, ECATS, devoted to specific experiments for the coupling of an accelerator, a target and a subcritical core. These experiments should provide an answer to the questions of online reactivity monitoring, sub-criticality determination and operational procedures (loading, start-up, shutdown, …) in an ADS by 2009-2010. The project has the objective to couple a fast lead core, within the VENUS building operated by the SCK•CEN, with a neutron generator able to work in three different modes: pulsed, continuous and continuous with beam interruptions at the millisecond scale. In order to achieve this goal, the VENUS facility has to be adapted and a modified GENEPI-3C accelerator has to be designed and constructed. The paper describes the main modifications to the reactor core and facility and to the accelerator, which will be executed during the years 2008 and 2009, and the experimental programme which will start in 2009
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie