64 research outputs found

    An agent-based approach to integrated assessment modelling of climate change

    Get PDF
    There is an ongoing discussion concerning the relationship between social welfare and climate change, and thus the required level and type of measures needed to protect the climate. Integrated assessment models (IAMs) have been extended to incorporate technological progress, heterogeneity and uncertainty, making use of a (stochastic) dynamic equilibrium approach in order to derive a solution. According to the literature, the IAM class of models does not take all the relationships among economic, social and environmental factors into account. Moreover, it does not consider these interdependencies at the micro-level, meaning that all possible consequences are not duly examined. Here, we propose an agent-based approach to analyse the relationship between economic welfare and climate protection. In particular, our aim is to analyse how the decisions of individual agents, allowing for the trade-off between economic welfare and climate protection, influence the aggregated emergent economic behaviour. Using this model, we estimate a damage function, with values in the order 3% - 4%for 2 C temperature increase and having a linear (or slightly concave) shape. We show that the heterogeneity of the agents, technological progress and the damage function may lead to lower GDP growth rates and greater temperature-related damage than what is forecast by models with solely homogeneous (representative) agents

    Superparamagnetic Iron Oxide Nanoparticle Probes for Molecular Imaging

    Get PDF
    The field of molecular imaging has recently seen rapid advances in the development of novel contrast agents and the implementation of insightful approaches to monitor biological processes non-invasively. In particular, superparamagnetic iron oxide nanoparticles (SPIO) have demonstrated their utility as an important tool for enhancing magnetic resonance contrast, allowing researchers to monitor not only anatomical changes, but physiological and molecular changes as well. Applications have ranged from detecting inflammatory diseases via the accumulation of non-targeted SPIO in infiltrating macrophages to the specific identification of cell surface markers expressed on tumors. In this article, we attempt to illustrate the broad utility of SPIO in molecular imaging, including some of the recent developments, such as the transformation of SPIO into an activatable probe termed the magnetic relaxation switch

    Thermotolerance of an inactivated rabies vaccine for dogs

    Get PDF
    This study provides the first robust data that the antibody response of dogs vaccinated with Nobivac® Rabies vaccine stored for several months at high temperatures (up to 30 °C) is not inferior to that of dogs vaccinated with vaccine stored under recommended cold-chain conditions (2–8 °C). A controlled and randomized non-inferiority study was carried out comparing the four-week post vaccination serological responses of Tanzanian village dogs inoculated with vaccine which had been stored at elevated temperatures for different periods of time with those of dogs vaccinated with the same product stored according to label recommendations. Specifically, the neutralizing antibody response following the use of vaccine which had been stored for up to six months at 25 °C or for three months at 30 °C was not inferior to that following the use of cold-chain stored vaccine. These findings provide reassurance that the vaccine is likely to remain efficacious even if exposed to elevated temperatures for limited periods of time and, under these circumstances, it can safely be used and not necessarily destroyed or discarded. The availability of thermotolerant vaccines has been an important factor in the success of several disease control and elimination programs and could greatly increase the capacity of rabies vaccination campaigns to access hard to reach communities in Africa and Asia. We have not confirmed a 3-year duration of immunity for the high temperature stored vaccine, however because annual re-vaccination is usually practiced for dogs presented for vaccination during campaigns in Africa and Asia this should not be a cause for concern. These findings will provide confidence that, for rabies control and elimination programs using this vaccine in low-income settings, more flexible delivery models could be explored, including those that involve limited periods of transportation and storage at temperatures higher than that currently recommended

    Transmission ecology of canine parvovirus in a multi-host, multi-pathogen system

    Get PDF
    Understanding multi-host pathogen maintenance and transmission dynamics is critical for disease control. However, transmission dynamics remain enigmatic largely because they are difficult to observe directly, particularly in wildlife. Here, we investigate the transmission dynamics of canine parvovirus (CPV) using state-space modelling of 20-years of CPV serology data from domestic dogs and African lions in the Serengeti ecosystem. We show that, although vaccination reduces the probability of infection in dogs, and despite indirect enhancement of population seropositivity as a result of vaccine shedding, the vaccination coverage achieved has been insufficient to prevent CPV from becoming widespread. CPV is maintained by the dog population and has become endemic with ~3.5-year cycles and prevalence reaching ~80%. While the estimated prevalence in lions is lower, peaks of infection consistently follow those in dogs. Dogs exposed to CPV are also more likely to become infected with a second multihost pathogen, canine distemper virus. However, vaccination can weaken this coupling raising questions about the value of monovalent versus polyvalent vaccines against these two pathogens. Our findings highlight the need to consider both pathogen- and host-level community interactions when seeking to understand the dynamics of multi-host pathogens and their implications for conservation, disease surveillance and control programmes

    Properties of monocytes generated from haematopoietic CD34+ stem cells from bone marrow of colon cancer patients

    Get PDF
    Monocytes exhibit direct and indirect antitumour activities and may be potentially useful for various forms of adoptive cellular immunotherapy of cancer. However, blood is a limited source of them. This study explored whether monocytes can be obtained from bone marrow haematopoietic CD34(+) stem cells of colon cancer patients, using previously described protocol of expansion and differentiation to monocytes of cord blood-derived CD34(+) haematopoietic progenitors. Data show that in two-step cultures, the yield of cells was increased approximately 200-fold, and among these cells, up to 60 % of CD14(+) monocytes were found. They consisted of two subpopulations: CD14(++)CD16(+) and CD14(+)CD16(−), at approximately 1:1 ratio, that differed in HLA-DR expression, being higher on the former. No differences in expression of costimulatory molecules were observed, as CD80 was not detected, while CD86 expression was comparable. These CD14(+) monocytes showed the ability to present recall antigens (PPD, Candida albicans) and neoantigens expressed on tumour cells and tumour-derived microvesicles (TMV) to autologous CD3(+) T cells isolated from the peripheral blood. Monocytes also efficiently presented the immunodominant HER-2/neu(369–377) peptide (KIFGSLAFL), resulting in the generation of specific cytotoxic CD8(+) T lymphocytes (CTL). The CD14(++)CD16(+) subset exhibited enhanced cytotoxicity, though nonsignificant, towards tumour cells in vitro. These observations indicate that generation of monocytes from CD34(+) stem cells of cancer patients is feasible. To our knowledge, it is the first demonstration of such approach that may open a way to obtain autologous monocytes for alternative forms of adaptive and adoptive cellular immunotherapy of cancer

    Firefly Luciferase and Rluc8 Exhibit Differential Sensitivity to Oxidative Stress in Apoptotic Cells

    Get PDF
    Over the past decade, firefly Luciferase (fLuc) has been used in a wide range of biological assays, providing insight into gene regulation, protein-protein interactions, cell proliferation, and cell migration. However, it has also been well established that fLuc activity can be highly sensitive to its surrounding environment. In this study, we found that when various cancer cell lines (HeLa, MCF-7, and 293T) stably expressing fLuc were treated with staurosporine (STS), there was a rapid loss in bioluminescence. In contrast, a stable variant of Renilla luciferase (RLuc), RLuc8, exhibited significantly prolonged functionality under the same conditions. To identify the specific underlying mechanism(s) responsible for the disparate sensitivity of RLuc8 and fLuc to cellular stress, we conducted a series of inhibition studies that targeted known intracellular protein degradation/modification pathways associated with cell death. Interestingly, these studies suggested that reactive oxygen species, particularly hydrogen peroxide (H2O2), was responsible for the diminution of fLuc activity. Consistent with these findings, the direct application of H2O2 to HeLa cells also led to a reduction in fLuc bioluminescence, while H2O2 scavengers stabilized fLuc activity. Comparatively, RLuc8 was far less sensitive to ROS. These observations suggest that fLuc activity can be substantially altered in studies where ROS levels become elevated and can potentially lead to ambiguous or misleading findings

    Rapid in-country sequencing of whole virus genomes to inform rabies elimination programmes.

    Get PDF
    Genomic surveillance is an important aspect of contemporary disease management but has yet to be used routinely to monitor endemic disease transmission and control in low- and middle-income countries. Rabies is an almost invariably fatal viral disease that causes a large public health and economic burden in Asia and Africa, despite being entirely vaccine preventable. With policy efforts now directed towards achieving a global goal of zero dog-mediated human rabies deaths by 2030, establishing effective surveillance tools is critical. Genomic data can provide important and unique insights into rabies spread and persistence that can direct control efforts. However, capacity for genomic research in low- and middle-income countries is held back by limited laboratory infrastructure, cost, supply chains and other logistical challenges. Here we present and validate an end-to-end workflow to facilitate affordable whole genome sequencing for rabies surveillance utilising nanopore technology. We used this workflow in Kenya, Tanzania and the Philippines to generate rabies virus genomes in two to three days, reducing costs to approximately £60 per genome. This is over half the cost of metagenomic sequencing previously conducted for Tanzanian samples, which involved exporting samples to the UK and a three- to six-month lag time. Ongoing optimization of workflows are likely to reduce these costs further. We also present tools to support routine whole genome sequencing and interpretation for genomic surveillance. Moreover, combined with training workshops to empower scientists in-country, we show that local sequencing capacity can be readily established and sustainable, negating the common misperception that cutting-edge genomic research can only be conducted in high resource laboratories. More generally, we argue that the capacity to harness genomic data is a game-changer for endemic disease surveillance and should precipitate a new wave of researchers from low- and middle-income countries
    • …
    corecore