448 research outputs found

    Missing Power vs low-l Alignments in the Cosmic Microwave Background: No Correlation in the Standard Cosmological Model

    Full text link
    On large angular scales (greater than about 60 degrees), the two-point angular correlation function of the temperature of the cosmic microwave background (CMB), as measured (outside of the plane of the Galaxy) by the Wilkinson Microwave Anisotropy Probe, shows significantly lower large-angle correlations than expected from the standard inflationary cosmological model. Furthermore, when derived from the full CMB sky, the two lowest cosmologically interesting multipoles, the quadrupole (l=2) and the octopole (l=3), are unexpectedly aligned with each other. Using randomly generated full-sky and cut-sky maps, we investigate whether these anomalies are correlated at a statistically significant level. We conclusively demonstrate that, assuming Gaussian random and statistically isotropic CMB anisotropies, there is no statistically significant correlation between the missing power on large angular scales in the CMB and the alignment of the l=2 and l=3 multipoles. The chance to measure the sky with both such a lack of large-angle correlation and such an alignment of the low multipoles is thus quantified to be below 10^{-6}.Comment: 4 Pages, 1 Figur

    Shape of Cosmic String Loops

    Full text link
    Complicated cosmic string loops will fragment until they reach simple, non-intersecting ("stable") configurations. Through extensive numerical study we characterize these attractor loop shapes including their length, velocity, kink, and cusp distributions. We find that an initial loop containing M harmonic modes will, on average, split into 3M stable loops. These stable loops are approximately described by the degenerate kinky loop, which is planar and rectangular, independently of the number of modes on the initial loop. This is confirmed by an analytic construction of a stable family of perturbed degenerate kinky loops. The average stable loop is also found to have a 40% chance of containing a cusp. We examine the properties of stable loops of different lengths and find only slight variation. Finally we develop a new analytic scheme to explicitly solve the string constraint equations.Comment: 11 pages, 19 figures. See http://www.phys.cwru.edu/projects/strings/ for more information, movies, code, etc. Minor clarification suggested by referee. Accepted for publication in Phys. Rev.

    Large Scale Baryon Isocurvature Inhomogeneities

    Get PDF
    Big bang nucleosynthesis constraints on baryon isocurvature perturbations are determined. A simple model ignoring the effects of the scale of the perturbations is first reviewed. This model is then extended to test the claim that large amplitude perturbations will collapse, forming compact objects and preventing their baryons from contributing to the observed baryon density. It is found that baryon isocurvature perturbations are constrained to provide only a slight increase in the density of baryons in the universe over the standard homogeneous model. In particular it is found that models which rely on power laws and the random phase approximation for the power spectrum are incompatible with big bang nucleosynthesis unless an {\em ad hoc}, small scale cutoff is included.Comment: 11pages + 8figures, LaTeX (2.09), postscript figures available via anonymous ftp from oddjob.uchicago.edu:/ftp/ibbn/fig?.ps where ?=1-8 or via email from [email protected], Fermilab-Pub-94/???-A and UMN-TH-1307/9

    Large-angle anomalies in the CMB

    Full text link
    We review the recently found large-scale anomalies in the maps of temperature anisotropies in the cosmic microwave background. These include alignments of the largest modes of CMB anisotropy with each other and with geometry and direction of motion of the Solar System, and the unusually low power at these largest scales. We discuss these findings in relation to expectation from standard inflationary cosmology, their statistical significance, the tools to study them, and the various attempts to explain them.Comment: Review in the Advances in Astronomy special issue "Testing the Gaussianity and Statistical Isotropy of the Universe" (eds. D. Huterer, E. Komatsu and S. Shandera); 16 pages, 7 figures. v2 matches the published versio

    Is the low-l microwave background cosmic?

    Full text link
    The large-angle (low-l) correlations of the Cosmic Microwave Background exhibit several statistically significant anomalies compared to the standard inflationary big-bang model, however no connection has hitherto been drawn between them. Here we show that the quadrupole and octopole are far more correlated (99.97% C.L.) than previously thought. The quadrupole plane and the three octopole planes are remarkably aligned. Three of these planes are orthogonal to the ecliptic at a level inconsistent with gaussian random statistically isotropic skies at 99.8% C.L., and the normals to these planes are aligned at 99.9% C.L. with the direction of the cosmological dipole and with the equinoxes. The remaining octopole plane is orthogonal to the supergalactic plane at >99.9% C.L. In a combined quadrupole-octopole map, the ecliptic plane narrowly threads between a hot spot and a cold spot over approximately 1/3 of the sky, and separates the three strongest extrema (in the south ecliptic hemisphere) from the three weakest extrema (in the north ecliptic hemisphere).Comment: 4 pages, 3 figures; more figures available at: http://www.phys.cwru.edu/projects/mpvectors/ PRL in press versio
    • …
    corecore