49 research outputs found

    Androgen receptor signaling regulates follicular growth and steroidogenesis in interaction with gonadotropins in the ovary during mini-puberty in mice

    Get PDF
    In females, androgens contribute to ovarian diseases such as polycystic ovarian syndrome (PCOS), but their action is also crucial for ovarian physiology, i.e., follicular growth and estradiol (E2) synthesis during reproductive life, in interaction with the gonadotropins LH and FSH. However, it is unclear whether androgens already play a role in the ovary at mini-puberty, a phase of postnatal development with active follicular growth and high E2 levels. Therefore, we analyzed the potential actions of androgens on the ovary and their possible interaction with gonadotropins during this period in mice. We used molecular-based studies and pharmacological approaches in vivo and on cultured ovaries. We found that mini-pubertal ovaries produce significant amounts of testosterone and display androgen receptor (AR) expression in growing follicles, both under the control of LH. By blocking AR signaling either in vivo or in ovarian cultures, we found that this pathway may participate in the regulation of prepubertal E2 synthesis and follicular growth, possibly by regulating the expression of a number of key intra-ovarian regulators, including FSH receptor (Fshr), the aromatase enzyme converting androgens into estrogens (Cyp19a1) and the cell cycle inhibitor p27KIP1 (Cdkn1b). We further showed that AR may stimulate FSH-mediated regulation of Cyp19a1 through its action on Fshr mRNA abundance. Overall, this work supports the idea that AR signaling is already activated in mini-pubertal ovaries to regulate E2 synthesis and follicular growth, at the interplay with LH and FSH signaling. Its early action may, thus, contribute to the implementation of early ovarian function with possible impacts on reproductive function

    Dynamics of Inflammatory Responses After SARS-CoV-2 Infection by Vaccination Status in the USA: A Prospective Cohort Study

    Get PDF
    BACKGROUND: Cytokines and chemokines play a critical role in the response to infection and vaccination. We aimed to assess the longitudinal association of COVID-19 vaccination with cytokine and chemokine concentrations and trajectories among people with SARS-CoV-2 infection. METHODS: In this longitudinal, prospective cohort study, blood samples were used from participants enrolled in a multi-centre randomised trial assessing the efficacy of convalescent plasma therapy for ambulatory COVID-19. The trial was conducted in 23 outpatient sites in the USA. In this study, participants (aged ≄18 years) were restricted to those with COVID-19 before vaccination or with breakthrough infections who had blood samples and symptom data collected at screening (pre-transfusion), day 14, and day 90 visits. Associations between COVID-19 vaccination status and concentrations of 21 cytokines and chemokines (measured using multiplexed sandwich immunoassays) were examined using multivariate linear mixed-effects regression models, adjusted for age, sex, BMI, hypertension, diabetes, trial group, and COVID-19 waves (pre-alpha or alpha and delta). FINDINGS: Between June 29, 2020, and Sept 30, 2021, 882 participants recently infected with SARS-CoV-2 were enrolled, of whom 506 (57%) were female and 376 (43%) were male. 688 (78%) of 882 participants were unvaccinated, 55 (6%) were partly vaccinated, and 139 (16%) were fully vaccinated at baseline. After adjusting for confounders, geometric mean concentrations of interleukin (IL)-2RA, IL-7, IL-8, IL-15, IL-29 (interferon-λ), inducible protein-10, monocyte chemoattractant protein-1, and tumour necrosis factor-α were significantly lower among the fully vaccinated group than in the unvaccinated group at screening. On day 90, fully vaccinated participants had approximately 20% lower geometric mean concentrations of IL-7, IL-8, and vascular endothelial growth factor-A than unvaccinated participants. Cytokine and chemokine concentrations decreased over time in the fully and partly vaccinated groups and unvaccinated group. Log INTERPRETATION: Initially and during recovery from symptomatic COVID-19, fully vaccinated participants had lower concentrations of inflammatory markers than unvaccinated participants suggesting vaccination is associated with short-term and long-term reduction in inflammation, which could in part explain the reduced disease severity and mortality in vaccinated individuals. FUNDING: US Department of Defense, National Institutes of Health, Bloomberg Philanthropies, State of Maryland, Mental Wellness Foundation, Moriah Fund, Octapharma, HealthNetwork Foundation, and the Shear Family Foundation

    COVID-19 Convalescent Plasma Therapy Decreases Inflammatory Cytokines: A Randomized Controlled Trial

    Get PDF
    This study examined the role that cytokines may have played in the beneficial outcomes found when outpatient individuals infected with SARS-CoV-2 were transfused with COVID-19 convalescent plasma (CCP) early in their infection. We found that the pro-inflammatory cytokine IL-6 decreased significantly faster in patients treated early with CCP. Participants with COVID-19 treated with CCP later in the infection did not have the same effect. This decrease in IL-6 levels after early CCP treatment suggests a possible role of inflammation in COVID-19 progression. The evidence of IL-6 involvement brings insight into the possible mechanisms involved in CCP treatment mitigating SARS-CoV-2 severity

    Compendio de física médica

    No full text
    Na port.: Ilustrado con 475 figuras intercaladas en el text

    Assimilation of surface reflectance in snow simulations: Impact on bulk snow variables

    No full text
    International audienceData assimilation of snow observations significantly improves the accuracy of snow cover simulations. However, remotely-sensed snowpack observations made in areas of complex topography are typically subject to large error and biases, creating a challenge for data assimilation. To improve the reliability of ensemble snowpack simulations, this study investigated the appropriate conditions for assimilating MODIS-like synthetic surface reflectances. We used a simulation system that included the Particle Filter data assimilation technique. More than 270 ensemble simulations involving assimilation of synthetic observations were conducted in a twin experiment procedure for three snow seasons. These tests were aimed at establishing the spectral combination of MODIS-like reflectances that convey the more information in the assimilation system, rendering the most reliable snowpack simulation, and determining the maximum observation errors that the assimilation system could tolerate. The assimilation of the first seven MODIS-like bands, covering visible and near-infrared wavelengths, provided the best scores compared with any other band combination, and thus are highly recommended for use when possible. The simulation system tolerated a maximum deviation from ground truth of 5% without loss of performance. However, the assimilation of the first seven bands of true MODIS surface of reflectance fails on improving simulation results in rouged mountain areas

    FSH inhibits AMH to support ovarian estradiol synthesis in infantile mice

    No full text
    International audienceAnti-Mullerian hormone (AMH) regulates ovarian function in cyclic females, notably by preventing premature follicle-stimulating hormone (FSH)-mediated follicular growth and steroidogenesis. Its expression in growing follicles is controlled by FSH and by estradiol (E2). In infantile females, there is a transient increase in the activity of the gonadotrope axis, as reflected by elevated levels of both gonadotropins and E2. We previously demonstrated in mice that elevated FSH concentrations are necessary to induce E2 production by preantral/early antral follicles through the stimulation of aromatase expression without supporting their growth. However, whether this action of FSH could involve AMH is unknown. Here, we show that Amh mRNA and protein abundance and serum AMH levels are elevated in infantile mouse females, compared with those in adults. By experimentally manipulating FSH and E2 levels in infantile mice, we demonstrate that high FSH concentrations lower Amh expression specifically in preantral/early antral follicles, whereas E2 has no effect. Importantly, treatment of infantile ovaries in organotypic cultures with AMH decreases FSH-mediated expression of Cyp19a1 aromatase, but it does not alter the expression of cyclin D2-mediating granulosa cell proliferation. Overall, our data indicate that the infantile elevation in FSH levels suppresses Amh expression in preantral/early antral follicles, thereby favoring Cyp19a1 aromatase expression and E2 production. Together with recent discoveries that AMH can act on both the hypothalamus and the pituitary to increase gonadotropin levels, this work suggests that AMH is a critical regulator of the gonadotrope axis during the infantile period, thereby contributing to adult reproductive function programming

    Aberrant granulosa cell-fate related to inactivated p53/Rb signaling contributes to granulosa cell tumors and to FOXL2 downregulation in the mouse ovary

    No full text
    International audienceOvarian granulosa cell tumors (GCTs) are indolent tumors of the ovary affecting women at all ages and potentially displaying late recurrence. Even if there is still little information regarding the mechanisms involved in GCT development and progression, FOXL2 would be a major tumor suppressor gene in granulosa cells. We analyzed the mechanisms underlying GCT initiation and progression by using mice with targeted expression of SV40 large T-antigen in granulosa cells (AT mouse), which develop GCTs. Consistent with patients, AT mice with developing GCTs displayed increased levels in circulating anti-Mullerian hormone (AMH), estradiol and androgens, as well as decreased FOXL2 protein abundance. Very few mice developed metastases (1 out of 30). In situ analyses revealed that GCT initiation resulted from both increased granulosa cell survival and proliferation in large antral follicles. Tumorigenesis was associated with the combined inactivation of p53 and Rb pathways, as shown by the impaired expression of respective downstream targets regulating cell apoptosis and proliferation, i.e., Bax, Bak, Gadd45a, Ccna2, Ccne1, E2f1, and Orc1. Importantly, the expression of FOXL2 was still present in newly developed GCTs and its downregulation only started during GCT growth. Collectively, our experiments provide evidence that disrupted p53/Rb signaling can drive tumor initiation and growth. This model challenges the current paradigm that impaired FOXL2 signaling is a major switch of granulosa cell tumorigenesis, albeit possibly contributing to tumor growth
    corecore