99 research outputs found

    Over-expression of adenosine deaminase in mouse podocytes does not reverse puromycin aminonucleoside resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Edema in nephrotic syndrome results from renal retention of sodium and alteration of the permeability properties of capillaries. Nephrotic syndrome induced by puromycin aminonucleoside (PAN) in rats reproduces the biological and clinical signs of the human disease, and has been widely used to identify the cellular mechanisms of sodium retention. Unfortunately, mice do not develop nephrotic syndrome in response to PAN, and we still lack a good mouse model of the disease in which the genetic tools necessary for further characterizing the pathophysiological pathway could be used. Mouse resistance to PAN has been attributed to a defect in glomerular adenosine deaminase (ADA), which metabolizes PAN. We therefore attempted to develop a mouse line sensitive to PAN through induction of normal adenosine metabolism in their podocytes.</p> <p>Methods</p> <p>A mouse line expressing functional ADA under the control of the podocyte-specific podocin promoter was generated by transgenesis. The effect of PAN on urinary excretion of sodium and proteins was compared in rats and in mice over-expressing ADA and in littermates.</p> <p>Results</p> <p>We confirmed that expression of ADA mRNAs was much lower in wild type mouse than in rat glomerulus. Transgenic mice expressed ADA specifically in the glomerulus, and their ADA activity was of the same order of magnitude as in rats. Nonetheless, ADA transgenic mice remained insensitive to PAN treatment in terms of both proteinuria and sodium retention.</p> <p>Conclusions</p> <p>Along with previous results, this study shows that adenosine deaminase is necessary but not sufficient to confer PAN sensitivity to podocytes. ADA transgenic mice could be used as a background strain for further transgenesis.</p

    Studies with aphidicolin on the Fv-1 host restriction of Friend murine leukemia virus.

    No full text
    The murine gene Fv-1 exerts a major control over the replication of Friend murine leukemia virus (F-MuLV). An effect of the gene product has been determined to be at the level of accumulation and integration of viral DNA. Aphidicolin, an inhibitor of eucaryotic DNA polymerase alpha, was studied in murine cells infected either permissively or nonpermissively with regard to the Fv-1 genotype. Results indicated that inhibition of DNA polymerase alpha did not affect the accumulation of form III viral DNA in either permissive or nonpermissive cells. However, the normal accumulation of circular form I DNA in permissive cells was inhibited. The block in the accumulation of form I DNA resembled that occurring in some F-MuLV Fv-1-nonpermissive infections. Additionally, aphidicolin treatment resulted in the accumulation of novel low-molecular-weight viral DNA species, normally detectable in a nonpermissive infection of NIH cells with B-tropic F-MuLV. These data suggest that the Fv-1 gene product may interact with host DNA polymerase alpha to prevent viral replication

    Fv-1 host cell restriction of friend leukemia virus: microinjection of unintegrated viral DNA.

    No full text
    The murine gene Fv-1 has been shown to exert a major influence over the replication of ecotropic murine leukemia viruses. Studies of the replication of Friend murine leukemia virus have shown that the restriction of viral replication occurs intracellularly after the initiation of viral DNA synthesis. The precise mechanism of the block imposed by the Fv-1 gene product is not completely understood. Our studies of Fv-1 restrictive infection have shown a variable decrease in the accumulation of intracellular unintegrated form I viral DNA. Analysis by microinjection of the viral DNA formed in nonpermissively infected BALB/c cells indicates that this DNA is infectious. These studies indicate that the form I DNA accumulated in nonpermissively infected BALB/c cells contains the complete viral sequences necessary for the production of viral progeny, and therefore, they suggest that the Fv-1 host restrictive mechanism recognizes viral factors other than form I DNA alone. These results support the possibility that Fv-1 host restriction occurs after formation of infectious viral DNA, perhaps at the integration step itself

    Ontogeny of Adenosine Deaminase in the Mouse Decidua and Placenta: Immunolocalization and Embryo Transfer Studies

    No full text
    This study has determined the cellular site of adenosine deaminase (ADA) expression in the mouse during development from Days 5 through 13 (day vaginal plug was found = Day 0) of gestation. Developmental expression of ADA progressed in two overlapping phases defined genetically (maternal vs. embryonal) and according to region (decidual vs. placental). In the first phase, ADA enzyme activity increased almost 200-fold in the antimesometrial region (decidua capsularis + giant trophoblast cells) from Days 6 through 9 of gestation but remained low in the mesometrial region. Immunohistochemical staining revealed a major localization of ADA to the secondary decidua. In the second phase, ADA activity increased several-fold in the placenta (labyrinth + basal zones) from Days 9 through 13 of gestation but remained low in the embryo proper. Immunohistochemical staining revealed a major localization of ADA to secondary giant cells, spongiotrophoblast, and labyrinthine trophoblast. Regression of decidua capsularis and growth of the spongiotrophoblast population accounted for an antimesometrial to placental shift in both ADA enzyme activity and a 40-kDa immunoreactive protein band. To verify a shift from maternal to fetal expression, studies were performed with two strains of mice (ICR, Eday) homozygous for a different ADA isozyme (ADA-A, ADA-B). Blastocysts homozygous for Adab were transferred to the uterus of pseudopregnant female recipients homozygous for Adaa. The isozymic pattern in chimeric embryo-decidual units analyzed at Days 7, 9, 11, and 13 revealed a predominance of maternal-encoded enzyme at Days 7 through 11 of gestation and a shift to fetal-encoded enzyme by Day 13. Thus, maternal expression of ADA in the antimesometrial decidua may play a role during establishment of the embryo in the uterine environment, whereas fetal expression of ADA in the trophoblast might be important to placentation
    corecore