459 research outputs found

    Multiscale Modeling of Binary Polymer Mixtures: Scale Bridging in the Athermal and Thermal Regime

    Full text link
    Obtaining a rigorous and reliable method for linking computer simulations of polymer blends and composites at different length scales of interest is a highly desirable goal in soft matter physics. In this paper a multiscale modeling procedure is presented for the efficient calculation of the static structural properties of binary homopolymer blends. The procedure combines computer simulations of polymer chains on two different length scales, using a united atom representation for the finer structure and a highly coarse-grained approach on the meso-scale, where chains are represented as soft colloidal particles interacting through an effective potential. A method for combining the structural information by inverse mapping is discussed, allowing for the efficient calculation of partial correlation functions, which are compared with results from full united atom simulations. The structure of several polymer mixtures is obtained in an efficient manner for several mixtures in the homogeneous region of the phase diagram. The method is then extended to incorporate thermal fluctuations through an effective chi parameter. Since the approach is analytical, it is fully transferable to numerous systems.Comment: in press, 13 pages, 7 figures, 6 table

    First-principles study of phase stability of Gd-doped EuO and EuS

    Get PDF
    Phase diagrams of isoelectronic Eu1−x_{1-x}Gdx_xO and Eu1−x_{1-x}Gdx_{x}S quasi-binary alloy systems are constructed using first-principles calculations combined with the standard cluster expansion approach and Monte-Carlo simulations. The oxide system has a wide miscibility gap on the Gd-rich side but forms ordered compounds on the Eu-rich side, exhibiting a deep asymmetric convex hull in the formation enthalpy diagram. The sulfide system has no stable compounds. The large difference in the formation enthalpies of the oxide and sulfide compounds is due to the contribution of local lattice relaxation, which is sensitive to the anion size. The solubility of Gd in both EuO and EuS is in the range of 10-20% at room temperature and quickly increases at higher temperatures, indicating that highly doped disordered solid solutions can be produced without the precipitation of secondary phases. We also predict that rocksalt GdO can be stabilized under appropriate experimental conditions.Comment: 14 pages, 6 figures (some with multiple panels), revtex4 with embedded ep

    GAS CHROMATOGRAPHIC ANALYSIS FOR TRACE AMOUNTS OF WATER IN SILICONES.

    Get PDF

    A First Principle Approach to Rescale the Dynamics of Simulated Coarse-Grained Macromolecular Liquids

    Full text link
    We present a detailed derivation and testing of our approach to rescale the dynamics of mesoscale simulations of coarse-grained polymer melts (I. Y. Lyubimov et al. J. Chem. Phys. \textbf{132}, 11876, 2010). Starting from the first-principle Liouville equation and applying the Mori-Zwanzig projection operator technique, we derive the Generalized Langevin Equations (GLE) for the coarse-grained representations of the liquid. The chosen slow variables in the projection operators define the length scale of coarse graining. Each polymer is represented at two levels of coarse-graining: monomeric as a bead-and-spring model and molecular as a soft-colloid. In the long-time regime where the center-of-mass follows Brownian motion and the internal dynamics is completely relaxed, the two descriptions must be equivalent. By enforcing this formal relation we derive from the GLEs the analytical rescaling factors to be applied to dynamical data in the coarse-grained representation to recover the monomeric description. Change in entropy and change in friction are the two corrections to be accounted for to compensate the effects of coarse-graining on the polymer dynamics. The solution of the memory functions in the coarse-grained representations provides the dynamical rescaling of the friction coefficient. The calculation of the internal degrees of freedom provides the correction of the change in entropy due to coarse-graining. The resulting rescaling formalism is a function of the coarse-grained model and thermodynamic parameters of the system simulated. The rescaled dynamics obtained from mesoscale simulations of polyethylene, represented as soft colloidal particles, by applying our rescaling approach shows a good agreement with data of translational diffusion measured experimentally and from simulations. The proposed method is used to predict self-diffusion coefficients of new polyethylene samples.Comment: 21 pages, 6 figures, 6 tables. Submitted to Phys. Rev.

    Identification of an organelle-specific myosin V receptor

    Get PDF
    Class V myosins are widely distributed among diverse organisms and move cargo along actin filaments. Some myosin Vs move multiple types of cargo, where the timing of movement and the destinations of selected cargoes are unique. Here, we report the discovery of an organelle-specific myosin V receptor. Vac17p, a novel protein, is a component of the vacuole-specific receptor for Myo2p, a Saccharomyces cerevisiae myosin V. Vac17p interacts with the Myo2p cargo-binding domain, but not with vacuole inheritance-defective myo2 mutants that have single amino acid changes within this region. Moreover, a region of the Myo2p tail required specifically for secretory vesicle transport is neither required for vacuole inheritance nor for Vac17p–Myo2p interactions. Vac17p is localized on the vacuole membrane, and vacuole-associated Myo2p increases in proportion with an increase in Vac17p. Furthermore, Vac17p is not required for movement of other cargo moved by Myo2p. These findings demonstrate that Vac17p is a component of a vacuole-specific receptor for Myo2p. Organelle-specific receptors such as Vac17p provide a mechanism whereby a single type of myosin V can move diverse cargoes to distinct destinations at different times

    The Host Galaxies of Hybrid Morphology Radio Sources

    Get PDF
    Based on their differing radio morphologies, powerful radio galaxies can be separated into the Fanaroff–Riley I (FR I) and II (FR II) classes. Hybrid morphology radio sources (HyMoRS) contain morphologies consistent with each type of jet on either side: a powerful, highly relativistic FR I–like jet terminating in a hotspot on one side and an FR I–like plume on the other. HyMoRS present a unique opportunity to study the conditions that give rise to the dichotomy. Using host galaxy properties, we conduct the first multiwavelength investigation into whether orientation can explain HyMoRS morphology. Through optical spectroscopy and mid-infrared photometry, we analyze the emission characteristics, and evaluate the broad characteristics of five HyMoRS host galaxies at intermediate redshifts (0.4 < z < 1.5). The HyMoRS host galaxies in our sample have properties consistent with typical host galaxies of FR II sources, suggesting that the observed hybrid morphologies may be caused by a dense, cluster-like environment bending FR II jets combined with a favorable orientation that can make one side appear similar to an FR I jet. Our results thus support the hypothesis that HyMoRS are mainly caused by environment and orientation

    Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in Magnaporthe oryzae

    Get PDF
    The pathogenic life cycle of the rice blast fungus Magnaporthe oryzae involves a series of morphogenetic changes, essential for its ability to cause disease. The smo mutation was identified > 25 years ago, and affects the shape and development of diverse cell types in M. oryzae, including conidia, appressoria, and asci. All attempts to clone the SMO1 gene by map-based cloning or complementation have failed over many years. Here, we report the identification of SMO1 by a combination of bulk segregant analysis and comparative genome analysis. SMO1 encodes a GTPase-activating protein, which regulates Ras signaling during infection-related development. Targeted deletion of SMO1 results in abnormal, nonadherent conidia, impaired in their production of spore tip mucilage. Smo1 mutants also develop smaller appressoria, with a severely reduced capacity to infect rice plants. SMO1 is necessary for the organization of microtubules and for septin-dependent remodeling of the F-actin cytoskeleton at the appressorium pore. Smol physically interacts with components of the Ras2 signaling complex, and a range of other signaling and cytoskeletal components, including the four core septins. SMO1 is therefore necessary for the regulation of RAS activation required for conidial morphogenesis and septin-mediated plant infection

    Effective Soft-Core Potentials and Mesoscopic Simulations of Binary Polymer Mixtures

    Full text link
    Mesoscopic molecular dynamics simulations are used to determine the large scale structure of several binary polymer mixtures of various chemical architecture, concentration, and thermodynamic conditions. By implementing an analytical formalism, which is based on the solution to the Ornstein-Zernike equation, each polymer chain is mapped onto the level of a single soft colloid. From the appropriate closure relation, the effective, soft-core potential between coarse-grained units is obtained and used as input to our mesoscale simulations. The potential derived in this manner is analytical and explicitly parameter dependent, making it general and transferable to numerous systems of interest. From computer simulations performed under various thermodynamic conditions the structure of the polymer mixture, through pair correlation functions, is determined over the entire miscible region of the phase diagram. In the athermal regime mesoscale simulations exhibit quantitative agreement with united atom simulations. Furthermore, they also provide information at larger scales than can be attained by united atom simulations and in the thermal regime approaching the phase transition.Comment: 19 pages, 11 figures, 3 table

    Big data and data repurposing – using existing data to answer new questions in vascular dementia research

    Get PDF
    Introduction: Traditional approaches to clinical research have, as yet, failed to provide effective treatments for vascular dementia (VaD). Novel approaches to collation and synthesis of data may allow for time and cost efficient hypothesis generating and testing. These approaches may have particular utility in helping us understand and treat a complex condition such as VaD. Methods: We present an overview of new uses for existing data to progress VaD research. The overview is the result of consultation with various stakeholders, focused literature review and learning from the group’s experience of successful approaches to data repurposing. In particular, we benefitted from the expert discussion and input of delegates at the 9th International Congress on Vascular Dementia (Ljubljana, 16-18th October 2015). Results: We agreed on key areas that could be of relevance to VaD research: systematic review of existing studies; individual patient level analyses of existing trials and cohorts and linking electronic health record data to other datasets. We illustrated each theme with a case-study of an existing project that has utilised this approach. Conclusions: There are many opportunities for the VaD research community to make better use of existing data. The volume of potentially available data is increasing and the opportunities for using these resources to progress the VaD research agenda are exciting. Of course, these approaches come with inherent limitations and biases, as bigger datasets are not necessarily better datasets and maintaining rigour and critical analysis will be key to optimising data use
    • …
    corecore