253 research outputs found

    Vevacious: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars

    Get PDF
    Several extensions of the Standard Model of particle physics contain additional scalars implying a more complex scalar potential compared to that of the Standard Model. In general these potentials allow for charge and/or color breaking minima besides the desired one with correctly broken SU(2)_L times U(1)_Y . Even if one assumes that a metastable local minimum is realized, one has to ensure that its lifetime exceeds that of our universe. We introduce a new program called Vevacious which takes a generic expression for a one-loop effective potential energy function and finds all the tree-level extrema, which are then used as the starting points for gradient-based minimization of the one-loop effective potential. The tunneling time from a given input vacuum to the deepest minimum, if different from the input vacuum, can be calculated. The parameter points are given as files in the SLHA format (though is not restricted to supersymmetric models), and new model files can be easily generated automatically by the Mathematica package SARAH. This code uses HOM4PS2 to find all the minima of the tree-level potential, PyMinuit to follow gradients to the minima of the one-loop potential, and CosmoTransitions to calculate tunneling times.Comment: 44 pages, 1 figure, manual for publicly available software, v2 corresponds to version accepted for publication in EPJC [clearer explanation of scale dependence and region of validity, explicit mention that SLHA files should have blocks matching those expected by model files, updated references

    Constraining the Natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature

    Get PDF
    We re-evaluate the constraints on the parameter space of the minimal supersymmetric standard model from tunneling to charge- and/or color-breaking minima, taking into account thermal corrections. We pay particular attention to the region known as the Natural MSSM, where the masses of the scalar partners of the top quarks are within an order of magnitude or so of the electroweak scale. These constraints arise from the interaction between these scalar tops and the Higgs fields, which allows the possibility of parameter points having deep charge- and color-breaking true vacua. In addition to requiring that our electro-weak-symmetry-breaking, yet QCD- and electromagnetism-preserving vacuum has a sufficiently long lifetime at zero temperature, also demanding stability against thermal tunneling further restricts the allowed parameter space.Comment: 7 pages, 2 figures, software available from http://vevacious.hepforge.org/ - version 2 matches that accepted for publication in Phys. Lett.

    A to Z of the Muon anomalous magnetic moment in the MSSM with Pati-Salam at the GUT scale

    Get PDF
    We analyse the low energy predictions of the minimal supersymmetric standard model (MSSM) arising from a GUT scale Pati-Salam gauge group further constrained by an A4 × Z5 family symmetry, resulting in four soft scalar masses at the GUT scale: one left-handed soft mass m0 and three right-handed soft masses m1, m2, m3, one for each generation. We demonstrate that this model, which was initially developed to describe the neutrino sector, can explain collider and non-collider measurements such as the dark matter relic density, the Higgs boson mass and, in particular, the anomalous magnetic moment of the muon (g − 2)μ. Since about two decades, (g − 2)μ suffers a puzzling about 3σ excessoftheexperimentallymeasuredvalueoverthetheoreticalprediction,whichour model is able to fully resolve. As the consequence of this resolution, our model predicts specific regions of the parameter space with the specific properties including light smuons and neutralinos, which could also potentially explain di-lepton excesses observed by CMS and ATLAS

    Global fits of third family hypercharge models to neutral current B-anomalies and electroweak precision observables

    Get PDF
    Funder: Carl Tryggers Stiftelse för Vetenskaplig Forskning; doi: http://dx.doi.org/10.13039/501100002805; Grant(s): CTS 17:139While it is known that third family hypercharge models can explain the neutral current BB-anomalies, it was hitherto unclear whether the ZZZ-Z^\prime mixing predicted by such models could simultaneously fit electroweak precision observables. Here, we perform global fits of several third family hypercharge models to a combination of electroweak data and those data pertinent to the neutral current BB-anomalies. While the Standard Model is in tension with this combined data set with a pp-value of .00068.00068, simple versions of the models (fitting two additional parameters each) provide much improved fits. The original Third Family Hypercharge Model, for example, has a pp-value of .065.065, i.e. Δχ2=6.5σ\sqrt{\Delta \chi^2}=6.5\sigma

    Communicating cosmology with multisensory metaphorical experiences

    Get PDF
    We present a novel approach to communicating abstract concepts in cosmology and astrophysics in a more accessible and inclusive manner. We describe an exhibit aiming at creating an immersive, multisensory metaphorical experience of an otherwise imperceptible physical phenomenon-dark matter. Human-Computer Interaction experts and physicists co-created a multisensory journey through dark matter by exploiting the latest advances in haptic and olfactory technology. We present the concept design of a pilot and a second, improved event, both held at the London Science Museum, including the practical setup of the multisensory dark matter experience, the delivery of sensory stimulation and preliminary insights from users' feedback

    MFV Reductions of MSSM Parameter Space

    Full text link
    The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tanβ10\tan \beta \sim 10 with multi-TeV sparticles.Comment: 2nd version, minor comments and references added, accepted for publication in JHE
    corecore