90 research outputs found
Extension of Bethe's diffraction model to conical Geometry: application to near field optics
The generality of the Bethe's two dipole model for light diffraction through
a subwavelength aperture in a conducting plane is studied in the radiation zone
for coated conical fiber tips as those used in near field scanning optical
microscopy. In order to describe the angular radiated power of the tip
theoretically, we present a simple, analytical model for small apertures
(radius < 40 nm) based on a multipole expansion. Our model is able to reproduce
the available experimental results. It proves relatively insensitive to cone
angle and aperture radius and contains, as a first approximation, the empirical
two-dipole model proposed earlier
Remote optical addressing of single nano-objects
We present a scheme for remotely addressing single nano-objects by means of
near-field optical microscopy that makes only use of one of the most
fundamental properties of electromagnetic radiation: its polarization. A medium
containing optically active nano-objects is covered with a thin metallic film
presenting sub-wavelength holes. When the optical tip is positioned some
distance away from a hole, surface plasmons in the metal coating are generated
which, by turning the polarization plane of the excitation light, transfer the
excitation towards a chosen hole and induce emission from the underlying
nano-objects. The method, easily applicable to other systems, is demonstrated
for single quantum dots (QDs) at low temperature. It may become a valuable tool
for future optical applications in the nanoworld
Discovery of Anion Insertion Electrochemistry in Layered Hydroxide Nanomaterials
Electrode materials which undergo anion insertion are a void in the materials innovation landscape and a missing link to energy efficient electrochemical desalination. In recent years layered hydroxides (LHs) have been studied for a range of electrochemical applications, but to date have not been considered as electrode materials for anion insertion electrochemistry. Here, we show reversible anion insertion in a LH for the first time using Co and Co-V layer hydroxides. By pairing in situ synchrotron and quartz crystal microbalance measurements with a computational unified electrochemical band-diagram description, we reveal a previously undescribed anion-insertion mechanism occurring in Co and Co-V LHs. This proof of concept study demonstrates reversible electrochemical anion insertion in LHs without significant material optimization. These results coupled with our foundational understanding of anion insertion electrochemistry establishes LHs as a materials platform for anion insertion electrochemistry with the potential for future application to electrochemical desalination
Creation of Rydberg Polarons in a Bose Gas
We report spectroscopic observation of Rydberg polarons in an atomic Bose
gas. Polarons are created by excitation of Rydberg atoms as impurities in a
strontium Bose-Einstein condensate. They are distinguished from previously
studied polarons by macroscopic occupation of bound molecular states that arise
from scattering of the weakly bound Rydberg electron from ground-state atoms.
The absence of a -wave resonance in the low-energy electron-atom scattering
in Sr introduces a universal behavior in the Rydberg spectral lineshape and in
scaling of the spectral width (narrowing) with the Rydberg principal quantum
number, . Spectral features are described with a functional determinant
approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile
impurity in a Bose gas. Excited states of polyatomic Rydberg molecules
(trimers, tetrameters, and pentamers) are experimentally resolved and
accurately reproduced with FDA.Comment: 5 pages, 3 figure
Theory of excitation of Rydberg polarons in an atomic quantum gas
We present a quantum many-body description of the excitation spectrum of
Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with
functional determinant theory, and we extend this technique to describe Rydberg
polarons of finite mass. Mean-field and classical descriptions of the spectrum
are derived as approximations of the many-body theory. The various approaches
are applied to experimental observations of polarons created by excitation of
Rydberg atoms in a strontium Bose-Einstein condensate.Comment: 14 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1706.0371
Diffraction of light by a planar aperture in a metallic screen
We present a complete derivation of the formula of Smythe [Phys.Rev.72, 1066
(1947)] giving the electromagnetic field diffracted by an aperture created in a
perfectly conducting plane surface. The reasoning, valid for any excitating
field and any hole shape, makes use only of the free scalar Green function for
the Helmoltz equation without any reference to a Green dyadic formalism. We
compare our proof with the one previously given by Jackson and connect our
reasoning to the general Huygens Fresnel theorem.Comment: J. Math. Phys. 47, 072901 (2006
Diffraction by a small aperture in conical geometry: Application to metal coated tips used in near-field scanning optical microscopy
Light diffraction through a subwavelength aperture located at the apex of a
metallic screen with conical geometry is investigated theoretically. A method
based on a multipole field expansion is developed to solve Maxwell's equations
analytically using boundary conditions adapted both for the conical geometry
and for the finite conductivity of a real metal. The topological properties of
the diffracted field are discussed in detail and compared to those of the field
diffracted through a small aperture in a flat screen, i. e. the Bethe problem.
The model is applied to coated, conically tapered optical fiber tips that are
used in Near-Field Scanning Optical Microscopy. It is demonstrated that such
tips behave over a large portion of space like a simple combination of two
effective dipoles located in the apex plane (an electric dipole and a magnetic
dipole parallel to the incident fields at the apex) whose exact expressions are
determined. However, the large "backward" emission in the P plane - a salient
experimental fact that remained unexplained so far - is recovered in our
analysis which goes beyond the two-dipole approximation.Comment: 21 pages, 6 figures, published in PRE in 200
CdSe-single-nanoparticle based active tips for near-field optical microscopy
We present a method to realize active optical tips for use in near-field
optics that can operate at room temperature. A metal-coated optical tip is
covered with a thin polymer layer stained with CdSe nanocrystals or nanorods at
low density. The time analysis of the emission rate and emission spectra of the
active tips reveal that a very small number of particles - possibly down to
only one - can be made active at the tip apex. This opens the way to near-field
optics with a single inorganic nanoparticle as a light source
Micro-spectroscopy on silicon wafers and solar cells
Micro-Raman (μRS) and micro-photoluminescence spectroscopy (μPLS) are demonstrated as valuable characterization techniques for fundamental research on silicon as well as for technological issues in the photovoltaic production. We measure the quantitative carrier recombination lifetime and the doping density with submicron resolution by μPLS and μRS. μPLS utilizes the carrier diffusion from a point excitation source and μRS the hole density-dependent Fano resonances of the first order Raman peak. This is demonstrated on micro defects in multicrystalline silicon. In comparison with the stress measurement by μRS, these measurements reveal the influence of stress on the recombination activity of metal precipitates. This can be attributed to the strong stress dependence of the carrier mobility (piezoresistance) of silicon. With the aim of evaluating technological process steps, Fano resonances in μRS measurements are analyzed for the determination of the doping density and the carrier lifetime in selective emitters, laser fired doping structures, and back surface fields, while μPLS can show the micron-sized damage induced by the respective processes
- …