1,164 research outputs found

    Propagation of squeezed radiation through amplifying or absorbing random media

    Get PDF
    We analyse how nonclassical features of squeezed radiation (in particular the sub-Poissonian noise) are degraded when it is transmitted through an amplifying or absorbing medium with randomly located scattering centra. Both the cases of direct photodetection and of homodyne detection are considered. Explicit results are obtained for the dependence of the Fano factor (the ratio of the noise power and the mean current) on the degree of squeezing of the incident state, on the length and the mean free path of the medium, the temperature, and on the absorption or amplification rate.Comment: 8 pages, 4 figure

    Engineering squeezed states in high-Q cavities

    Full text link
    While it has been possible to build fields in high-Q cavities with a high degree of squeezing for some years, the engineering of arbitrary squeezed states in these cavities has only recently been addressed [Phys. Rev. A 68, 061801(R) (2003)]. The present work examines the question of how to squeeze any given cavity-field state and, particularly, how to generate the squeezed displaced number state and the squeezed macroscopic quantum superposition in a high-Q cavity

    Inertial range scaling of scalar flux spectra in uniformly sheared turbulence

    Full text link
    A model based on two-point closure theory of turbulence is proposed and applied to study the Reynolds number dependency of the scalar flux spectra in homogeneous shear flow with a cross-stream uniform scalar gradient. For the cross-stream scalar flux, in the inertial range the spectral behavior agrees with classical predictions and measurements. The streamwise scalar flux is found to be in good agreement with the results of atmospheric measurements. However, both the model results and the atmospheric measurements disagree with classical predictions. A detailed analysis of the different terms in the evolution equation for the streamwise scalar flux spectrum shows that nonlinear contributions are governing the inertial subrange of this spectrum and that these contributions are relatively more important than for the cross-stream flux. A new expression for the scalar flux spectra is proposed. It allows us to unify the description of the components in one single expression, leading to a classical K^-7/3 inertial range for the cross-stream component and to a new K^-23/9 scaling for the streamwise component that agrees better with atmospheric measurements than the K^-3 prediction of J. C. Wyngaard and O. R. Cot\'e [Quart. J. R. Met. Soc. 98, 590 (1972)]

    Reynolds-number Dependence of Streamwise Velocity Fluctuations in Turbulent Pipe Flow

    Get PDF
    Statistics of the streamwise velocity component in fully-developed pipe flow are examined for Reynolds numbers in the range 5.5 x 10^4 < Re_D < 5.7 x 10^6. The second moment exhibits two maxima: one in the viscous sublayer is Reynolds-number dependent while the other, near the lower edge of the log region, is also Reynolds-number dependent and follows roughly the peak in Reynolds shear stress. The behaviour of both peaks is consistent with the concept of inactive motion which increases with increasing Reynolds number and decreasing distance from the wall. No simple scaling is apparent, and in particular, so-called "mixed" scaling is no better than wall scaling in the viscous sublayer and is actually worse than wall scaling in the outer region. The second moment is compared with empirical and theoretical scaling laws and some anomalies are apparent. The scaling of spectra using y, R and u_τ is examined. It appears that even at the highest Reynolds number, they exhibit incomplete similarity only: while spectra do collapse with either inner or outer scales for limited ranges of wave number, these ranges do not overlap. Thus similarity may not be described as complete and any apparent k_1^(-1) range does not attract any special significance and does not involve universal constants. It is suggested that this is because of the influence of inactive motion. Spectra also show the presence of very long structures close to the wall

    Purification and properties of plant cytochrome b5

    Full text link
    corecore