4,438 research outputs found

    Counting statistics of coherent population trapping in quantum dots

    Get PDF
    Destructive interference of single-electron tunneling between three quantum dots can trap an electron in a coherent superposition of charge on two of the dots. Coupling to external charges causes decoherence of this superposition, and in the presence of a large bias voltage each decoherence event transfers a certain number of electrons through the device. We calculate the counting statistics of the transferred charges, finding a crossover from sub-Poissonian to super-Poissonian statistics with increasing ratio of tunnel and decoherence rates.Comment: 4 pages, 2 figure

    Switching of electrical current by spin precession in the first Landau level of an inverted-gap semiconductor

    Full text link
    We show how the quantum Hall effect in an inverted-gap semiconductor (with electron- and hole-like states at the conduction- and valence-band edges interchanged) can be used to inject, precess, and detect the electron spin along a one-dimensional pathway. The restriction of the electron motion to a single spatial dimension ensures that all electrons experience the same amount of precession in a parallel magnetic field, so that the full electrical current can be switched on and off. As an example, we calculate the magnetoconductance of a p-n interface in a HgTe quantum well and show how it can be used to measure the spin precession due to bulk inversion asymmetry.Comment: 5 pages, 4 figures, extended versio

    Theory of the topological Anderson insulator

    Get PDF
    We present an effective medium theory that explains the disorder-induced transition into a phase of quantized conductance, discovered in computer simulations of HgTe quantum wells. It is the combination of a random potential and quadratic corrections proportional to p^2 sigma_z to the Dirac Hamiltonian that can drive an ordinary band insulator into a topological insulator (having an inverted band gap). We calculate the location of the phase boundary at weak disorder and show that it corresponds to the crossing of a band edge rather than a mobility edge. Our mechanism for the formation of a topological Anderson insulator is generic, and would apply as well to three-dimensional semiconductors with strong spin-orbit coupling.Comment: 4 pages, 3 figures (updated figures, calculated DOS

    The systematic position of Plagiochila moritziana, P. trichostoma and P. deflexa based on ITS sequence variation of nuclear ribosomal DNA, morphology, and lipophilic secondary metabolites

    Get PDF
    According to phylogenetic analyses of nrDNA ITS1 and ITS2 sequences (including the 5.8S unit) the Neotropical Plagiochila moritziana, P. rutilans var. rutilans, P. rutilans var. standleyi, P. trichostoma (= P. permista, syn. nov.), and P. subtrinitensis form a monophyletic lineage and are placed in P. sect. Rutilantes; all five taxa lack a ca 20 base pair sequence that is present in all the taxa of the other Plagiochila sections investigated. The Central American P. subtrinitensis is treated as a synonym of the Hawaiian endemic P. deflexa. Plagiochila moritziana is excluded from sect. Fuscoluteae and reduced to a variety of P. rutilans; P. sect. Permistae is treated as a synonym of P. sect. Rutilantes. The sporophytes of P. trichostoma and P. deflexa are described for the first time. Fresh material of P. rutilans var. moritziana exhibits a distinct odor of peppermint caused by the presence of several menthane monoterpenoids, principally pulegone. The Central American P. rutilans var. standleyi is reported from Ecuador, new to South America. Lectotypes are designated for P. rutilans var. moritziana, P. subtrinitensis, and P. trichostoma

    Finite difference method for transport properties of massless Dirac fermions

    Full text link
    We adapt a finite difference method of solution of the two-dimensional massless Dirac equation, developed in the context of lattice gauge theory, to the calculation of electrical conduction in a graphene sheet or on the surface of a topological insulator. The discretized Dirac equation retains a single Dirac point (no "fermion doubling"), avoids intervalley scattering as well as trigonal warping, and preserves the single-valley time reversal symmetry (= symplectic symmetry) at all length scales and energies -- at the expense of a nonlocal finite difference approximation of the differential operator. We demonstrate the symplectic symmetry by calculating the scaling of the conductivity with sample size, obtaining the logarithmic increase due to antilocalization. We also calculate the sample-to-sample conductance fluctuations as well as the shot noise power, and compare with analytical predictions.Comment: 11 pages, 12 figure

    A Proper Motion Survey for White Dwarfs with the Wide Field Planetary Camera 2

    Full text link
    We have performed a search for halo white dwarfs as high proper motion objects in a second epoch WFPC2 image of the Groth-Westphal strip. We identify 24 high proper motion objects with mu > 0.014 ''/yr. Five of these high proper motion objects are identified as strong white dwarf candidates on the basis of their position in a reduced proper motion diagram. We create a model of the Milky Way thin disk, thick disk and stellar halo and find that this sample of white dwarfs is clearly an excess above the < 2 detections expected from these known stellar populations. The origin of the excess signal is less clear. Possibly, the excess cannot be explained without invoking a fourth galactic component: a white dwarf dark halo. We present a statistical separation of our sample into the four components and estimate the corresponding local white dwarf densities using only the directly observable variables, V, V-I, and mu. For all Galactic models explored, our sample separates into about 3 disk white dwarfs and 2 halo white dwarfs. However, the further subdivision into the thin and thick disk and the stellar and dark halo, and the subsequent calculation of the local densities are sensitive to the input parameters of our model for each Galactic component. Using the lowest mean mass model for the dark halo we find a 7% white dwarf halo and six times the canonical value for the thin disk white dwarf density (at marginal statistical significance), but possible systematic errors due to uncertainty in the model parameters likely dominate these statistical error bars. The white dwarf halo can be reduced to around 1.5% of the halo dark matter by changing the initial mass function slightly. The local thin disk white dwarf density in our solution can be made consistent with the canonical value by assuming a larger thin disk scaleheight of 500 pc.Comment: revised version, accepted by ApJ, results unchanged, discussion expande

    Making Sigma-Protocols Non-interactive Without Random Oracles

    Get PDF
    Damg˚ard, Fazio and Nicolosi (TCC 2006) gave a transformation of Sigma-protocols, 3-move honest verifier zero-knowledge proofs, into efficient non-interactive zero-knowledge arguments for a designated verifier. Their transformation uses additively homomorphic encryption to encrypt the verifier’s challenge, which the prover uses to compute an encrypted answer. The transformation does not rely on the random oracle model but proving soundness requires a complexity leveraging assumption. We propose an alternative instantiation of their transformation and show that it achieves culpable soundness without complexity leveraging. This improves upon an earlier result by Ventre and Visconti (Africacrypt 2009), who used a different construction which achieved weak culpable soundness. We demonstrate how our construction can be used to prove validity of encrypted votes in a referendum. This yields a voting system with homomorphic tallying that does not rely on the Fiat-Shamir heuristic

    Arya: Nearly linear-time zero-knowledge proofs for correct program execution

    Get PDF
    There have been tremendous advances in reducing interaction, communication and verification time in zero-knowledge proofs but it remains an important challenge to make the prover efficient. We construct the first zero-knowledge proof of knowledge for the correct execution of a program on public and private inputs where the prover computation is nearly linear time. This saves a polylogarithmic factor in asymptotic performance compared to current state of the art proof systems. We use the TinyRAM model to capture general purpose processor computation. An instance consists of a TinyRAM program and public inputs. The witness consists of additional private inputs to the program. The prover can use our proof system to convince the verifier that the program terminates with the intended answer within given time and memory bounds. Our proof system has perfect completeness, statistical special honest verifier zero-knowledge, and computational knowledge soundness assuming linear-time computable collision-resistant hash functions exist. The main advantage of our new proof system is asymptotically efficient prover computation. The prover’s running time is only a superconstant factor larger than the program’s running time in an apples-to-apples comparison where the prover uses the same TinyRAM model. Our proof system is also efficient on the other performance parameters; the verifier’s running time and the communication are sublinear in the execution time of the program and we only use a log-logarithmic number of rounds
    • 

    corecore