
Making Sigma-protocols Non-interactive
without Random Oracles?

Pyrros Chaidos?? and Jens Groth? ? ?

University College London

Abstract. Damg̊ard, Fazio and Nicolosi (TCC 2006) gave a transforma-
tion of Sigma-protocols, 3-move honest verifier zero-knowledge proofs,
into efficient non-interactive zero-knowledge arguments for a designated
verifier. Their transformation uses additively homomorphic encryption
to encrypt the verifier’s challenge, which the prover uses to compute
an encrypted answer. The transformation does not rely on the random
oracle model but proving soundness requires a complexity leveraging
assumption.
We propose an alternative instantiation of their transformation and show
that it achieves culpable soundness without complexity leveraging. This
improves upon an earlier result by Ventre and Visconti (Africacrypt
2009), who used a different construction which achieved weak culpable
soundness.
We demonstrate how our construction can be used to prove validity
of encrypted votes in a referendum. This yields a voting system with
homomorphic tallying that does not rely on the Fiat-Shamir heuristic.

Keywords: Sigma-protocols, non-interactive zero-knowledge designated
verifier argument, DFN transformation, culpable soundness, voting.

1 Introduction

Cryptographic applications often require a party to demonstrate that a statement
is true without revealing any additional details. For example, a voter may wish
to prove that an encrypted message contains a vote for a valid candidate without
disclosing the actual candidate. This can be done using zero-knowledge proofs [17]
that enable a prover to demonstrate to a verifier that a statement x belongs
to a language L in NP defined by a relation R without giving the verifier any
information about the witness w such that (x,w) ∈ R.

? c©IACR 2015. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag on January 11, 2015. The version published by Springer-Verlag
is available at http://dx.doi.org/10.1007/978-3-662-46447-2 29

?? This author was supported by an EPSRC scholarship (EP/G037264/1 – Security
Science DTC)

? ? ? This research was supported by the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.
307937.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/110898463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Σ-protocols are particular types of 3-move honest verifier zero-knowledge
proofs that can be highly efficient. However, in many applications it is preferable
for a protocol to be non-interactive [5] with the prover preparing a proof with
no need for direct input from the verifier. The Fiat-Shamir transformation [13]
produces a non-interactive version of a Σ-protocol by substituting the verifier’s
challenge with the output of a hash function on the prover’s statement and
messages. The transformation can be proven secure in the random oracle model [3].
However, the random oracle model is regarded with some skepticism since there
exist pathological protocols that can be proven secure in the random oracle model
but fail in any real-world instantiation [6, 16].

Damg̊ard, Fazio and Nicolosi (DFN) [11] introduced an alternative transfor-
mation. The DFN transformation works in the Registered Key Model (RKM) [2]
where a verifier registers a public key and transforms a Σ-protocol with linear
answer into a non-interactive zero-knowledge argument that can be verified by
this specific verifier [23]. The transformation works by having the verifier encrypt
his challenge under an additively homomorphic encryption scheme and relies
on the Σ-protocol having an answer that can be computed using linear algebra
and the homomorphic property of the encryption scheme to enable the prover to
complete an encrypted version of the answer in the Σ-protocol. Their construction
is secure for a logarithmic number of proofs but soundness rests on a complexity
leveraging assumption.

Ventre and Visconti [28] give an alternative proof of soundness for a construc-
tion based on a two ciphertext variation of the DFN transformation in the style
of Naor and Yung [25]. They replace the complexity leveraging assumption by
introducing a modification of culpable soundness1 [21] that they call weak culpable
soundness. Standard culpable soundness restricts adversaries to being “aware”
of the falsehood of the statement they are proving. Weak culpable soundness
furthermore requires that the adversary is also aware of the fact that she has
succeeded in producing a convincing proof of a false statement, by producing a
second auxiliary proof to that effect.

In the DFN setting using weak culpable soundness would require the adversary
to prove statements containing ciphertexts addressed to the designated verifier. It
would be challenging to provide such an adversary with enough power to perform
the required proofs without having knowledge of the verifier’s secret decryption
key. We instead opt to construct the underlying protocol with the property that
forged proofs reveal the challenge. This is enough to contradict the semantic
security of the encryption scheme used for the designated verifier proof if a false
proof is ever produced.

1.1 Our Contribution

We give an instantiation of the DFN transformation that achieves standard
culpable soundness without complexity leveraging. The transformation relies on
an IND-CPA secure additively homomorphic encryption scheme and is quite

1 Culpable soundness was also called co-soundness in an earlier version of [21].

efficient. The tranformation can be applied to Σ-protocols that have linear
answers and unique identifiable challenges (Sect. 2.2).

We can use our resulting non-interactive zero-knowledge designated verifier
arguments to efficiently prove statements about encrypted plaintexts. In particu-
lar, we can prove that a ciphertext contains either 0 or 1 without disclosing the
plaintext. This can in turn be used to prove that a set of ciphertexts encrypt a
witness for the satisfiability of a circuit. For the appropriate Σ-protocols to be in
place, we require the encryption scheme to be additively homomorphic modulo a
prime and satisfy a few other requirements (Sect. 2.1). We use Okamoto-Uchiyama
encryption [26] as an example.

We proceed to give an example application of our non-interactive zero-
knowledge arguments to provide publicly verifiable arguments in the context
of electronic voting. In voting systems such as Helios [1] voters submit their
votes encrypted under a homomorphic encryption scheme accompanied with
non-interactive arguments (typically using the Fiat-Shamir transformation) that
the encrypted votes are in fact valid. Ciphertexts with convincing arguments
are aggregated homomorphically to produce an encrypted tally which is then
decrypted to produce the result. By releasing the designated verifier keys to the
public (similar to [29]), once vote submission has concluded, we can use our
non-interactive designated verifier arguments in place of the usual non-interactive
zero-knowledge arguments with minimal changes to the design.

1.2 Related Work

Since the introduction of non-interactive zero-knowledge proofs by Blum, Feldman
and Micali [5] much effort has been spent on reducing their size [10, 24, 19, 15].
The introduction of pairing-based techniques [21, 18, 22] has led to practically
efficient non-interactive zero-knowledge proofs that can be used in the context of
pairing-based cryptography.

The Fiat-Shamir heuristic can be used to make a Σ-protocol non-interactive.
This can lead to highly efficient non-interactive zero-knowledge proofs but relies
on the random oracle model when proving security. Recently pairing-based
succinct non-interactive zero-knowledge arguments [20, 14, 27] have become very
compact even for large scale statements, however, they rely on knowledge extractor
assumptions over bilinear groups.

The above research yields non-interactive zero-knowledge proofs that are
publicly verifiable. However, there are many settings where it suffices to have
non-interactive zero-knowledge arguments intended for a designated verifier.
Cramer and Shoup used universal hash proofs to build a highly efficient chosen
ciphertext attack secure public-key encryption scheme [8, 9]. Non-interactive
proofs for a designated verifier for all languages in NP can be found in [2] in the
key registration model where parties register keys.

The most closely related works are the DFN transformation by Damg̊ard,
Fazio and Nicolosi [11] and the work by Ventre and Visconti [28] that we have
already discussed.

2 Preliminaries

We write y = A(x; r) when the algorithm A on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and
setting y = A(x; r). We also write y ← S for sampling y uniformly at random
from the set S.

All algorithms get as input a security parameter n written in unary as 1n.
Sometimes we do not explicitly write this input to the algorithms but we will
always assume it is implicitly available to the algorithms. The intuition is that
the higher the security parameter, the more secure the cryptographic system.

Given two functions f, g : N→ [0, 1] we write f(n) ≈ g(n) when |f(n)−g(n)| =
O(n−c) for every constant c > 0. We say that f is negligible if f(n) ≈ 0 and that
f is overwhelming if f(n) ≈ 1.

An NP-relation is a binary relation R consisting of pairs (x,w) that can be
decided in polynomial time in the length of x. We call x the statement and w
the witness. The relation R gives rise to a language LR = {x | ∃w : (x,w) ∈ R}
of statements in R. To incorporate the security parameter into the relations, we
will without loss of generality assume all statements are of a form such that n
can be easily derived (all statements in this paper could be reformulated to be of
the form x = (1n, x′) although for notational convenience we will not do this)
and all statements and witnesses are of size polynomial in n. We define Rn as
the relation R restricted to statements corresponding to n.

2.1 Additively Homomorphic Encryption

A public key encryption scheme is a triple of probabilistic polynomial time
algorithms (K, E ,D). The key generation function K given a security parameter
returns a public encryption key ek and a private decryption key dk. The encryption
algorithm E given an encryption key ek and a message m returns a ciphertext
c← Eek(m). The deterministic decryption algorithm D given a decryption key
dk and a ciphertext c returns a message m or a special symbol ⊥ if the ciphertext
is invalid.

The public encryption key ek defines a message space Mek of possible plain-
texts, a randomness space Rek and a ciphertext space Cek. In this paper we will
make use of an encryption scheme where the message space is Zp for some large
integer p, which is explicitly or implicitly defined by the public key, and with
size |p| = `p(n) for a publicly known polynomial `p. We say that (K, E ,D) is
additively homomorphic if the randomness and ciphertext spaces are finite groups
as well (written additively and multiplicatively respectively) and for all possible
keys ek and plaintexts m1,m2 ∈Mek and r1, r2 ∈ Rek we have

Eek(m1; r1) · Eek(m2; r2) = Eek(m1 +m2; r1 + r2).

We say that an additively homomorphic scheme (K, E ,D) is a strongly addi-
tively homomorphic scheme if it satisfies the four additional properties described
below:

Prime order message space: The message space is Zp for some prime p.

Decryption homomorphic2: Membership of the ciphertext space can be effi-
ciently tested and the decryption algorithm on all elements in Cek returns a
plaintext in Mek (i.e., decryption does not fail). Furthermore, decryptions
respect the additively homomorphic operation, i.e., for all possible key pairs
(ek, dk) and c1, c2 ∈ Cek we have

Ddk(c1) +Ddk(c2) = Ddk(c1 · c2).

Extended randomness: Rek = ZN for some integer N but the encryption
function accepts randomness in Z and for all m ∈Mek and r ∈ Z

E(m; r) = E(m; r mod N).

Verifiable keys: There exists an efficient test VerifyKey(1n, ek, dk) that given
a public key ek and decryption key dk (or without loss of generality the
randomness used in the key generation) returns 1 if and only if (ek, dk) is a
valid key pair using security parameter n.

For notational convenience, we let cz be the vector (cz1 , . . . , czn) given a
ciphertext c and a vector of integers z = (z1, . . . , zn). Given a vector w we also
define c← Eek(w) as the vector of ciphertexts given by (Eek(w1), . . . , Eek(wn)).

Definition 1 (IND-CPA security). We say that (K, E ,D) is indistinguishable
under chosen plaintext attack (IND-CPA secure) if for all probabilistic polynomial
time stateful adversaries A

Pr
[
(ek, dk)← K(1n); (m0,m1)← A(ek); b← {0, 1}; c← Eek(mb) : A(c) = b

]
≈ 1

2
,

where A outputs m0,m1 ∈Mek.

Okamoto-Uchiyama encryption [26] The Okamoto-Uchiyama [26] cryptosys-
tem is strongly additively homomorphic with a message space Zp for a prime p
that is implicitly defined by the public key.

K(1n): Pick two different `p(n)-bit primes p, q and let N = p2 · q. Then choose a
random g in Z∗N such that g mod p2 has order p(p − 1) in Z∗p2 . The public

key is ek = (N, g) and the secret decryption key is dk = (ek, p).

Eek(m): Given m ∈ Zp return Eek(m; r) = gm+rN mod N , where r ← ZN .

Ddk(c): Return m = L(cp−1 mod p2)
L(gp−1 mod p2) mod p, where L(x) = x−1

p .

For a given public key ek = (N, g) the randomness space is ZN and the
ciphertext space is Z∗N . Even though the message space is defined as Zp, in

2 This property is trivial for cryptosystems where the entire cipherspace consists of
valid encryptions but in the general case it must be stated explicitly.

practice we cannot disclose p but as long as the encrypting party picks messages
m ∈ {0, 1}`p(n)−1 we are guaranteed that they fall within the message space and
will decrypt correctly.

Direct calculation confirms that Okamoto-Uchiyama encryption is decryption
homomorphic and that it is easy to extend the randomness space to Rek = Z. The
keys are verifiable in the sense that given the decryption key, i.e., the factorization
of N , it is easy to check that the keys are a valid output of the key generation
algorithm and that the encryption scheme satisfies all the required properties.

2.2 Σ-protocols with Linear Answers and Unique Identifiable
Challenges

A Σ-protocol for an NP-relation R is a 3-move protocol that enables a prover
to demonstrate to a verifier that a statement x satisfies x ∈ LR, i.e. that there
exists w such that (x,w) ∈ R without disclosing anything else, in particular
not disclosing the value of w that the prover has in mind. A typical run of a
Σ-proocol is illustrated in Fig. 1.

a -

Prover(x,w) e Verifier(x) −→ {accept, reject}�

z -

Fig. 1. Σ-protocol with statement x and witness w.

A Σ-protocol is public-coin, which means that the challenge e chosen by the
verifier is picked uniformly at random without the verifier storing any private
information about it. We will consider protocols where e is picked as a random
n-bit string, where n is the security parameter.

We will restrict ourselves to Σ-protocols with a linear answer over the integers.
By this we mean without loss of generality that we can consider a prover that
generates the initial message a and two integer vectors z1 and z2. The answer to
a challenge e ∈ {0, 1}n can then be computed as the integer vector z = ez1 + z2.
We will assume that all the integers in z1, z2, z are non-negative and that there
is a known polynomial upper bound `z(n) on the bit-size of the integers.

We can now describe a Σ-protocol for an NP-relation R with linear answer
as a pair (PΣ ,VΣ), where PΣ ,VΣ are probabilistic polynomial time algorithms.
The Σ-protocol runs as follows:

(a, z1, z2)← PΣ(x,w): The prover given a statement and witness pair (x,w) ∈
Rn generates an initial message a and a state z1, z2.

e← {0, 1}n: An n-bit challenge is chosen uniformly at random.

z ← ez1 + z2: An answer to the challenge e can be computed as z = ez1 + z2.

{0, 1} ← VΣ(x, a, e, z): The verifier given a statement x and a protocol transcript
(a, e,z) returns 1 if accepting and 0 if rejecting. The verifier will always reject
if any inputs are malformed, for instance if e /∈ {0, 1}n or z contains an entry
zi /∈ {0, 1}`z(n).

A Σ-protocol is required to operate correctly when used by honest partic-
ipants (completeness), to prevent dishonest provers from convincing verifiers
that false statements hold (soundness), and not to leak information about w
(zero-knowledge). Formally, we require that a Σ-protocol (PΣ ,VΣ) for an NP-
relation R with linear answer should be complete and special honest verifier
zero-knowledge as defined below. With respect to soundness, we will for our pur-
poses be interested in a special class of Σ-protocols that have unique identifiable
challenges.

Definition 2 (Completeness). We say (PΣ ,VΣ) is perfectly complete if for
all n ∈ N and (x,w) ∈ Rn

Pr
[
(a, z1, z2)← PΣ(x,w); e← {0, 1}n; z = ez1 + z2 : VΣ(x, a, e, z) = 1

]
= 1.

Definition 3 (Special Honest Verifier Zero-Knowledge (SHVZK)). We
say that (PΣ ,VΣ) is computationally special honest verifier zero-knowledge if there
exists a probabilistic polynomial time simulator S such that for all probabilistic
polynomial time stateful adversaries A

Pr

[
(x,w)← A(1n); (a, z1, z2)← PΣ(x,w); e← {0, 1}n; z ← ez1 + z2 :

(x,w) ∈ Rn and A(a, e,z) = 1

]
≈Pr

[
(x,w)← A(1n); e← {0, 1}n; (a, z)← S(x, e) :

(x,w) ∈ Rn and A(a, e,z) = 1

]
If this holds also for unbounded adversaries A, we say (PΣ ,VΣ) is statistically
special honest verifier zero-knowledge.

Traditionally, Σ-protocols are required to have special soundness, which says
that if the prover, after having created the initial message a, can answer two
different challenges e and e′ then it is possible to compute a witness w for the
statement x being proved such that (x,w) ∈ R.

We do not need the witness to be extractable in this paper and will therefore
relax the soundness definition to just saying that on a false statement there is at
most a single unique challenge the prover can answer after having created the
initial message a.

However, we will require that under certain circumstances this unique answer-
able challenge should be identifiable, i.e., if the prover “knows” the statement
is false in a certain way then she can actually compute the unique challenge
e she will be able to answer if she can answer any challenge at all. We define
this by adapting the notion of culpable soundness from [21]. We say that the
unique challenge is identifiable using an NP-relation Rguilt, which only contains

false statements, if when the prover produces a statement x and a witness wguilt

of being guilty of cheating such that (x,wguilt) ∈ Rguilt, then it is possible to
efficiently compute a unique challenge where the verifier may possibly accept.
The relation Rguilt will typically include all false statements that have a special
form, depending on the specifics.

Definition 4 (Soundness with unique identifiable challenge). We say
(PΣ ,VΣ) has a unique identifiable challenge using NP-relation Rguilt if there
is a polynomial time algorithm E that takes as input the statement, witness
and initial message and returns the unique challenge e that can be answered.
Formally, we require that for all n, x,wguilt, a, e, z where (x,wguilt) ∈ Rguilt,n and
VΣ(x, a, e, z) = 1 that e = E(x,wguilt, a).

A frequently asked question is why would the adversary want to provide a
witness for cheating. The answer is that there are many natural scenarios where
the real adversary is only a part of a larger system that contains the guilt witness.
It may well be that the system would never provide a guilt witness in a normal
execution but even when that is the case the notion can still be useful in security
proofs: by framing a “standard” adversary within such a system we are able to
explicitly use privileged information held by honest parties in security reductions.
In Sect. 4 we give voting as a concrete example of how culpable soundness can be
used to prevent cheating by voters. Voters prove that they have encrypted valid
votes using the election system’s public key. The guilt witness is the decryption
key, which the voting system will never make public since it would reveal all the
votes. However, if a cheating voter exists, it is enough to point out that the guilt
witness will exist in the possession of the electoral authorities. To satisfy the
definition we may consider a new adversary which consists of the cheating voter’s
behaviour, with the decryption key added to the output in a post-processing
step. Culpable soundness then guarantees the voter cannot cheat and submit an
invalid vote.

We note that the extractor E only requires the guilt witness and the initial
message from the prover. This will be critical in the next section where the
protocol is made non-interactive via the DFN transformation and the prover’s
answer will be encrypted. In general, we cannot require that a cheating prover
knows the contents of that ciphertext since it might have been assembled in a
way that differs from the protocol.

Σ-protocol for additively homomorphic encryption of 0 or 1. Consider a
strongly additively homomorphic encryption scheme (G, E ,D) with message space
Zp for a prime p defined by the encryption key. We will now give a Σ-protocol
for proving that a ciphertext encrypts 0 or 1 using randomness r ∈ {0, 1}`r(n)
bounded by a polynomial `r(n).

Let

R =
{(

(ek, c), (m, r)
)

: m ∈ {0, 1} and r ∈ {0, 1}`r(n) and c = Eek(m; r)
}
,

Prover((ek, c), (m, r)) Verifier(ek, c)

ma ← {1}||{0, 1}2n a, b Accept if and only if

ra ← {0, 1}`r(n)+2n; a← Eek(ma; ra)
-

a, b, c ∈ Cek, f ∈ {0, 1}2n+2

rb ← {0, 1}`r(n)+3n; b← Eek(−mma; rb) e← {0, 1}n za ∈ {0, 1}`r(n)+2n+1
�

zb ∈ {0, 1}`r(n)+3n+1

f := em+ma, za := er + ra f, za, zb cea = Eek(f ; za)

zb := (f − e)r + rb
-

cf−eb = Eek(0; zb)

Fig. 2. Σ-protocol for encryption of 0 or 1.

Rguilt =
{(

(ek, c), dk
)

: c ∈ Cek and Ddk(c) /∈ {0, 1} and VerifyKey(1n, ek, dk) = 1
}
.

Theorem 1. Fig. 2 describes a Σ-protocol for R with linear answer and unique
identifiable challenge using Rguilt assuming (G, E ,D) is a strongly additively
homomorphic encryption scheme with message space Zp of sufficiently large size
such that `p(n) > n.

Proof. The algorithms are probabilistic polynomial time. The protocol has linear
answer with a polynomial upper bound of `z(n) = `r(n) + 3n + 1 on the bit-
lengths of the integers in the answer. Direct verification shows that the protocol
is perfectly complete.

The protocol is statistical SHVZK. The simulator given challenge e ∈ {0, 1}n
picks f ← {1}||{0, 1}2n, za ← {0, 1}`r(n)+2n and zb ← {0, 1}`r(n)+3n. It then
computes a = c−eEek(f ; za) and b = ce−fEek(0; zb) and returns the simulated
proof (a, b, f, za, zb). Observe that the simulated f, za, zb are statistically close to
those of a real proof. To see the simulation is statistically indistinguishable from
a real proof with challenge e all that remains to be seen is that given f, za, zb,
the initial message containing a, b is fixed by the verification equations in both
real and simulated proofs.

Finally, let us show that the protocol has unique identifiable challenges using
Rguilt. A witness in Rguilt gives us the decryption key for the encryption scheme.
We can verify the correctness of the decryption key and decrypt c to get m and
also decrypt a, b to get plaintexts ma and mb. In a succesful argument, the value
f must be f = em + ma mod p since otherwise the first verification equation
would fail. The second verification equation gives us (f − e)m+mb = 0 mod p,
which means e(m − 1)m + mam + mb = 0 mod p. If m /∈ {0, 1} we have that
(m − 1)m 6= 0 mod p and therefore the equation uniquely determines e mod p.
With p > 2n this identifies at a unique challenge e ∈ {0, 1}n that the prover may
be able to answer or shows that no answerable challenge exists. �

2.3 Non-Interactive Designated Verifier Zero-Knowledge
Arguments

It is often desirable to operate in a single step, avoiding the interaction needed
to execute a Σ-protocol. The prover still wishes to demonstrate to the verifier

the truth of a statement x ∈ LR for an NP-relation R without disclosing any
other information about her witness w.

In a non-interactive designated verifier zero-knowledge argument system, we
imagine the verifier sets up a public key pk for the proof together with a secret
verification key vk that can be used to verify the arguments. The system therefore
consists of three probabilistic polynomial time algorithms (G,P,V).

(pk, vk)← G(1n): The key generation algorithm, given the security parameter
as input, generates a public key pk and a secret verification key vk.

π ← P(pk, x, w): Given a public key pk and (x,w) ∈ Rn, the prover algorithm
generates an argument π.

{0, 1} ← V(vk, x, π): Given a secret verification key vk, a statement x and an
argument π, the verification algorithm returns 1 if accepting the argument
and 0 for rejection of the argument.

(G,P,V) is said to be a non-interactive designated verifier zero-knowledge argu-
ment system for R with culpable soundness with respect to Rguilt if it is complete,
culpably sound and zero-knowledge as defined below.

Definition 5 (Completeness). (G,P,V) is perfectly complete if for all n ∈ N
and all (x,w) ∈ Rn

Pr
[
(pk, vk)← G(1n);π ← P(pk, x, w) : V(vk, x, π) = 1

]
= 1.

Intuitively, the argument is zero-knowledge if it does not leak information
about the witness. The arguments we construct will be zero-knowledge assuming
the keys are honestly generated. We define this notion through the existence of
a simulator that can simulate arguments given the verifier’s secret verification
key. In our constructions we will get zero-knowledge even if the adversary knows
the secret verification key, a strong type of zero-knowledge called composable
zero-knowledge in [18] due to it making composition of zero-knowledge proofs
easier.

Definition 6 (Composable zero-knowledge). (G,P,V) is computationally
composable zero-knowledge if for all probabilistic polynomial time stateful adver-
saries A

Pr
[
(pk, vk)← G(1n); (x,w)← A(pk, vk);π ← P(pk, x, w) : (x,w) ∈ Rn and A(π) = 1

]
≈Pr

[
(pk, vk)← G(1n); (x,w)← A(pk, vk);π ← S(vk, x) : (x,w) ∈ Rn and A(π) = 1

]
.

If the above holds also for unbounded stateful adversaries A then we say the
argument is statistically composable zero-knowledge.

Culpable soundness [21] is a relaxation of soundness that restricts the prover
in the following way: First, we only consider false statements in a subset Lguilt of
L̄R characterised by a relation Rguilt. Second, we require a successful cheating

prover to also output a guilt witness wguilt along with his false statement x
such that (x,wguilt) ∈ Rguilt. Intuitively this definition captures the notion of a
malicious prover being aware of the falsehood of the statement for which she is
creating a fake proof.

Definition 7 (Adaptive culpable soundness). We say (G,P,V) is culpably
sound with respect to the relation Rguilt if for all probabilistic polynomial time A

Pr
[
(pk, vk)← G(1n); (x, π, wguilt)← A(pk) : (x,wguilt) ∈ Rguilt,n and V(vk, x, π) = 1

]
≈ 0.

The above definition does not directly cover the adversary, A having access to a
verification oracle V(vk, ·, ·). However it is straightforward to handle cases where
the adversary has access to a logarithmic number of queries (as in [11]), since that
can be simulated by guessing the responses with inverse polynomial probability.

3 Transformation

We will now use the DFN transformation on a Σ-protocol with linear answer over
the integers and unique identifiable challenges to get a non-interactive designated
verifier argument. The verifier uses an additively homomorphic encryption scheme
(K, E ,D) to encrypt a random challenge e. Since the Σ-protocol has linear answer,
the prover can now use the homomorphic property of the encryption scheme to
compute an encryption of the answer z in the Σ-protocol, which is sent together
with the initial message a. The verifier decrypts the ciphertext from the prover
to get z and checks whether (a, e,z) is a valid proof. The full non-interactive
designated verifier argument is described in Fig. 3.

G(1n)

(ek, dk)← K(1n)
e← {0, 1}n
c← Eek(e)
pk := (ek, c)
vk := (dk, e)
Return (pk, vk)

P(pk, x, w)

(a,z1,z2)← PΣ(x,w)
cz ← cz1Eek(z2)
Return π := (a, cz)

V(vk, x, π)

Parse π = (a, cz)
z ← Ddk(cz)
Return VΣ(x, a, e,z)

Fig. 3. Non-interactive designated verifier argument

Theorem 2. (G,P,V) specified in Fig. 3 is a non-interactive designated verifier
argument for R with culpable soundness for Rguilt if (PΣ ,VΣ) is a Σ-protocol for
R with linear answer over the integers and soundness with unique identifiable
challenge using Rguilt and if (K, E ,D) is an additively homomorphic, IND-CPA
secure public key encryption scheme where Zp is of sufficiently large size to
include the answers, i.e., `p(n) > `z(n).

Proof. Since (PΣ ,VΣ) and (K, E ,D) are probabilistic polynomial time algorithms
so are (G,P,V). Perfect completeness follows from the additive homomorphicity
of the encryption scheme and that 0 ≤ zi < 2`z(n) < p for all entries zi in z
combined with the perfect completeness of (PΣ ,VΣ).

Next, we will prove that the construction is zero-knowledge. The simulator
knows the secret verification key vk = (dk, e). It starts by running the SHVZK
simulator for the Σ-protocol to get a simulated proof (a, e,z) for the statement x.
It then generates cz ← Eek(z) and returns the simulated argument π := (a, cz).

To see a that simulated argument is indistinguishable from a real argument
consider a hybrid simulator that does get the witness as input. This hybrid
simulator proceeds by following the Σ-protocol to get an argument (a, e,z) and
then encrypts z to get cz. Since the encryption scheme is also homomorphic
with respect to the randomness used for encryption, the hybrid arguments gener-
ated this way and real arguments are perfectly indistinguishable. Furthermore,
since the Σ-protocol is SHVZK, hybrid arguments and simulated arguments are
computationally indistinguishable. Furthermore, if the Σ-protocol has statistical
SHVZK then the hybrid arguments and simulated arguments are statistically
indistinguishable.

Finally, we will prove that the construction has adaptive culpable soundness
with respect to Rguilt. Plugging our construction into the probability defining
culpable soundness with a probabilistic polynomial time adversary A we get

Pr

[
(ek, dk)← G(1n); e← {0, 1}n; c← Eek(e)
(x, (a, cz), wguilt)← A(ek, c); z ← Ddk(cz)

:
(x,wguilt) ∈ Rguilt

VΣ(x, a, e, z) = 1

]
.

By the unique identifiable challenge property of the Σ-protocol this probability
is at most the chance that e is the unique answerable challenge:

Pr

[
(ek, dk)← G(1n); e← {0, 1}n; c← Eek(e)
(x, (a, cz), wguilt)← A(ek, c); z ← Ddk(cz)

:
(x,wguilt) ∈ Rguilt

e = E(x,wguilt, a)

]
.

By the IND-CPA security of the encryption scheme, this probability is at
most negligibly larger than the same expression with c encrypting a random
challenge e′

Pr

[
(ek, dk)← G(1n); e, e′ ← {0, 1}n; c← Eek(e′)
(x, (a, cz), wguilt)← A(ek, c); z ← Ddk(cz)

:
(x,wguilt) ∈ Rguilt

e = E(x,wguilt, a)

]
.

Since e is chosen uniformly random this latter probability is at most 2−n, which
is negligible. �

3.1 Non-interactive Designated Verifier Arguments for Statements
about Ciphertexts

In Sect. 2.2 we gave a Σ-protocol for proving a ciphertext having either 0 or
1 as plaintext. Using the DFN transformation, this leads to a non-interactive

designated verifier argument with culpable soundness for a ciphertext encrypting
0 or 1, i.e., for the relation

R =
{

((ek, c), (m, r)) : m ∈ {0, 1} and r ∈ {0, 1}`r(n) and c = Eek(m; r)
}

with culpable soundness using

Rguilt =
{

((ek, c), dk) : c ∈ Cek and Ddk(c) /∈ {0, 1} and VerifyKey(1n, ek, dk) = 1
}
.

This designated verifier argument works for ciphertexts produced by all
strongly additively homomorphic encryption schemes that have message space Zp
for p > 2n such as for instance the Okamoto-Uchiyama [26] encryption scheme
from Sect. 2.1. A second instance of the same strongly additively homomorphic
encryption scheme but with larger message space can also be used for the DFN
transformation. However, in the interest of more efficient implementations, it
might be desirable to use a different encryption scheme for the DFN transforma-
tion. Specifically, DFN does not require the message space to be of prime order
or the scheme to be strongly additively homomorphic, giving us the option of
using an encryption scheme better suited for encrypting long messages such as
Damg̊ard-Jurik [12].

It is fairly simple to adapt standard Σ-protocols for other languages expressing
properties about ciphertexts. In particular, in addition to the argument for
encryption of 0 or 1 it is possible to construct non-interactive designated verifier
arguments for the following relations:

Plaintext is 0: We can prove that a ciphertext c encrypts 0, i.e., give a non-
interactive designated verifier argument for the relation

R0 =
{

((ek, c), r) : r ∈ {0, 1}`r(n) and c = Eek(0; r)
}
.

Equivalence of plaintexts: Given two ciphertexts c and c′, we can give a non-
interactive designated verifier argument for them having the same plaintext
by proving that c/c′ is an encryption of 0 using the above designated verifier
argument.

Multiplicative relationship: Given a triple of ciphertexts c0, c1 and c2, we can
prove that the plaintexts m0,m1 and m2 satisfy m0 = m1m2 mod p. More
precisely, we can construct a designated verifier argument for the relation

RM =

{
((ek, c0, c1, c2), (m1,m2, r0, r1, r2)) : m1,m2 ∈ Zp, r0, r1, r2 ∈ {0, 1}`r(n)

c0 = Eek(m1m2; r0) and c1 = Eek(m1; r1) and c2 = Eek(m2; r2)

}
.

In all cases, the corresponding guilt witness wguilt consists of the decryption key,
which can be used to decrypt the ciphertexts in the statement.

Circuit Satisfiability We will now show that given a circuit consisting of NAND-
gates and encryptions of the wires it is possible to prove that the plaintexts

correspond to a satisfying assignment. A circuit C with k + 1 wires and s gates
can be described as {(j1, j2, j3)}sj=1, which means that the wires should satisfy
wj3 = ¬(wj1 ∧ wj2). We let the output wire be w0 = 1 and the corresponding
ciphertext be c0 = Eek(1; 0) encrypted with randomness r0 = 0. We consider the
relations:

RC =

{
((C, ek, c1, . . . , ck), (w1, r1, . . . , wk, rk)) | ∀j = 1, . . . , s : wj3 = ¬(wj1 ∧ wj2)

∀i = 1, . . . , k : wi ∈ {0, 1} ∧ ri ∈ {0, 1}`r(n)−2 ∧ ci = Eek(wi; ri)

}
,

RCguilt =

{
((C, ek, c1, . . . , ck), dk) | VerifyKey(1n, ek, dk) = 1 and ∀i = 1, . . . k : ci ∈ Cek
∃i ∈ {1, . . . , k} : wi = Ddk(ci) /∈ {0, 1} or ∃j ∈ {1, . . . , s} : wj3 6= ¬(wj1 ∧ wj2)

}
.

The strategy in the designated verifier argument for RC is to first prove that
each ciphertext contains a wire value wi ∈ {0, 1}. Next, the prover proves for
each NAND-gate (j1, j2, j3) that wj3 = ¬(wj1 ∧ wj2). Following [21] we have for
wj1 , wj2 , wj3 ∈ {0, 1}

wj3 = ¬(wj1 ∧ wj2) if and only if wj1 + wj2 + 2wj3 − 2 ∈ {0, 1}.

Using the homomorphic properties of the encryption scheme, we will therefore for
each NAND-gate show cj1cj2c

2
j3
Eek(−2; 0) contains 0 or 1. The full construction

can be found in Fig. 4

PC(pk, (C, ek, c1, . . . , ck), (w1, r1, . . . , wk, rk))

w0 = 1, r0 = 0, c0 = Eek(w0; r0)
For i = 1, . . . , k
πi ← P(pk, ci, (wi, ri))

Parse C = {(j1, j2, j3)}sj=1

For j = 1, . . . , s
c′j = cj1cj2c

2
j3Eek(−2; 0)

m′j = wj1 + wj2 + 2wj3 − 2
r′j = rj1 + rj2 + 2rj3
π′j ← P(pk, c′j , (m

′
j , r
′
j))

Return π = (π1, . . . , πk, π
′
1, . . . , π

′
s)

VC(vk, (C, ek, c1, . . . , ck), π)

w0 = 1, r0 = 0, c0 = Eek(w0; r0)
Parse C = {(j1, j2, j3)}sj=1

For j = 1, . . . , s
c′j = cj1cj2c

2
j3Eek(−2; 0)

Parse π = (π1, . . . , πk, π
′
1, . . . , π

′
s)

Accept if and only if
For i = 1, . . . , k
V(vk, ci, πi) = 1

For j = 1, . . . , s
V(vk, c′j , π

′
j) = 1

Fig. 4. Non-interactive designated verifier argument (GC ,PC ,VC) for encryption of
satisfying assignment of wires in a circuit using GC = G where (G,P,V) is a designated
verifier argument for encryption of 0 or 1.

Theorem 3. (GC ,PC ,VC) given in Fig. 4 is a non-interactive designated verifier
argument for RC with culpable soundness using RCguilt if (G,P,V) is a non-
interactive designated verifier argument for encryption of 0 or 1 using Rguilt from
Sect. 2.2.

Proof. Perfect completeness follows from the homomorphic properties of the
encryption scheme and the perfect completeness of (G,P,V).

We will now prove composable zero-knowledge. The simulator SC(vk, (C, ek, c1, . . . , ck))
runs like the prover except it simulates the proofs π1, . . . , πk, π

′
1, . . . , π

′
s as

πi ← S(vk, (ek, ci)) and π′j ← S(vk, c′j). A straightforward hybrid argument

shows that this is indistinguishable from a real proof.3

Finally, we will prove that the argument is culpably sound. By the culpable
soundness of (G,P,V) when we are given dk by the adversary, the proofs π1, . . . , πk
guarantee each ciphertext contains 0 or 1. The homomorphic property of the
encryption scheme combined with the culpable soundness of the proofs π′1, . . . , π

′
s

then shows that the plaintexts respect the NAND-gates. Since the output is
w0 = 1 this means the circuit is satisfied by the encrypted values. �

4 Applications in Voting with Homomorphic Tallying

We will use a basic referendum voting scheme as an illustration of how to use non-
interactive zero-knowledge designated verifier arguments with culpable soundness.
We use a modification of the framework by Bernhard et al. [4] which generalises
the Helios voting system. Such schemes operate by having eligible voters post their
votes on a bulletin board encrypted with an additively homomorphic encryption
scheme. The election result can then be produced by a single decryption operation
on the homomorphic sum of the individual votes. Zero-knowledge protocols ensure
that the various participating parties remain honest.

4.1 Voting Schemes

We assume a bulletin board BB holds all messages posted by the various par-
ticipants in the election, and that it behaves honestly for the entirety of the
election. During the submission of ballots, it operates in an append-only mode
without disclosing its contents. After voting has concluded, the bulletin board
reveals the ballots it contains and checks their validity. The checks use only
public information and as such are reproducible by any party; the bulletin board
performs them for convenience. Finally, we assume that the history of the bulletin
board is publicly accessible as well as the current state.

Our use of a delayed bulletin board is a departure from usual practice and is
aimed at preventing attacks based on malleability. The additional trust placed
on the board by this requirement may be mitigated by having the bulletin board
immediately display commitments to ballots or eliminated by augmenting the
ballot encryption to be submission secure [29]. We also note that Cortier et al. [7]
develop techniques to guard against misbehaving boards.

In the interest of simplicity, we restrict the options in the referendum to {0, 1}
without giving the option of casting an abstention ballot. The election is run by

3 We remark that here the usefulness of composable zero-knowledge comes into play
since the hybrid arguments are indistinguishable even to an adversary with access to
the verification key vk, which allows the hybrid argument to go through.

two trustees, TD and TV , tasked with holding the decryption and verification
keys for the election. We will for simplicity consider them to be trusted parties
but they could be implemented using threshold cryptography.

Definition 8 (Voting Scheme). A voting scheme Π consists of five probabilis-
tic polynomial time algorithms: Setup, Vote, SubmitBallot, CheckBoard,
Tally, which operate as follows:

Setup The setup algorithm takes as input a security parameter 1n. It produces
secret information SEC, public information PUB and verification informa-
tion AUG. It also initialises the bulletin board BB and sets it to be hidden.
PUB is assumed to be public knowledge after Setup has run.

Vote Vote accepts a vote m ∈ {0, 1} and outputs a ballot B encoding m.

SubmitBallot SubmitBallot(B,BB) takes as input a ballot B and the current
state of the bulletin board BB and outputs either (0, BB) if it rejects B or

(1, BB
+←B) if it accepts it.

CheckBoard CheckBoard(BB,AUG) makes BB visible, and then checks all
ballots on BB, replacing with ⊥ any ballots that do not pass the verification
tests. After checking, the verification information of valid ballots can be
removed from the board.

Tally Tally (BB,SEC) takes as input a verified bulletin board BB and the
secret information SEC and outputs the election result.

For correctness we require that the ballots of honest voters are counted
correctly, and that ballots cast by malicious voters cannot influence the election
more than an honest one (i.e casting q malicious ballots can only add q votes
and subtract none).

ExpCORΠ,A (n)

(PUB, SEC,AUG)← Setup(1n)
(vsum, q)← (0, 0)

AVoteOracle(·),BallotOracle(·)(PUB)
BB ← CheckBoard(BB,AUG)
result← Tally(BB,SEC)
Return (result, vsum, q)

VoteOracle(v)

B ← Vote(v)
(r,BB)← SubmitBallot(B,BB)
if r = accept : vsum← (vsum+ v)
Return (r,B)

BallotOracle(B)

(r,BB)← SubmitBallot(B,BB)
q ← q + 1
Return r

Fig. 5. The referendum correctness experiment, and the oracles provided to the adver-
sary.

Definition 9 (Correctness). We say that a referendum voting scheme Π is
correct if for all efficient adversaries A:

Pr
[
(result, vsum, q)← ExpCORΠ,A (n) : vsum ≤ result ≤ q + vsum

]
≈ 1

Definition 10 (Ballot Privacy). We say that a voting scheme Π satisfies
ballot privacy if for all efficient stateful interactive adversaries A:

Pr
[
ExpBPΠ,A(n) = 1

]
≈ 1

2

ExpBPΠ,A(n)

(PUB, SEC,AUG)← Setup(1n)
b← {0, 1}
AVoteOracle(·),BallotOracle(·)(PUB)
BB ← CheckBoard(BB,AUG)
BB′ ← CheckBoard(BB′, AUG)
result← Tally(BB′, SEC)

b̂← A(result, BB,AUG)

Return b = b̂

VoteOracle(v)

B′ ← Vote(v)
if b = 1 then B ← B′

else B ← Vote(0)
(r,BB)← SubmitBallot(B,BB)
(r′, BB′)← SubmitBallot(B′, BB′)
Return (r,B)

BallotOracle(B)

(r,BB)← SubmitBallot(B,BB)
if r = accept then

(r′, BB′)← SubmitBallot(B,BB′)
Return r

Fig. 6. The Ballot Privacy experiment, and the oracles provided to the adversary.

4.2 A Referendum Voting Scheme

We will now describe a voting scheme ΠREF for a yes-no referendum, based
on an additively homomorphic encryption scheme such as (K, E ,D) and with
a non-interactive designated verifier argument system (G,P,V) for a plaintext
being 0 or 1 such as the one given in Fig. 3.

For simplicity, we omit correctness proofs for keys having been generated
correctly but point out that since the setup involves a limited number of parties
we could assume the use of online zero-knowledge protocols using standard
techniques. We also assume that the bulletin board behaves honestly. We now
give descriptions of the Voting Protocol Algorithms:

Setup The setup algorithm takes as input a security parameter 1n. The decryp-
tion trustee TD runs K(1n) to produce (ek, dk) and the verification trustee
then runs G(1n) to obtain (pk, vk). Let, PUB = (ek, pk), AUG = vk and
SEC = dk. The procedure also initialises the bulletin board BB to be hidden,
and publishes PUB.

Vote(m) Pick r ← {0, 1}`r(n) and return (c, π), where c = Eek(m; r) and
π ← P(pk, (ek, c, r)).

SubmitBallot(B,BB) Return (accept, BB
+←B).

CheckBoard(BB,AUG) The bulletin board BB becomes visible. TV pub-
lishes AUG. For every ballot B = (c, π) in BB we check whether c ∈ Cek and
V(vk, (ek, c), π) = 1. If not, they will be omitted from the tally.

Tally(BB,SEC) The decryption trustee publishes result = Ddk(
∏k
i=1 ci),

where c1, . . . , ck are the encrypted votes that passed the validity check.

Theorem 4. The referendum scheme ΠREF defined above is correct.

Proof. Let A be an adversary against ExpCORΠ,A (n) that causes result to be
out of bounds with non-negligible probability. We construct a simulator B that
contradicts the adaptive culpable soundness of (G,P,V). B will simulate the
correctness experiment for A while acting as the adversary for the adaptive
culpable soundness experiment. B operates by running the correctness experiment
normally with the difference that it does not generate (pk, vk) but instead obtains
pk from the adaptive culpable soundness experiment.

Because (K, E ,D) is correct and additively homomorphic, result being out of
bounds implies one of the submitted ballots B = (c, π) is such that c encrypts a
value other than 0 or 1 while at the same time V(vk, (ek, c), π) = 1. Choosing
one of the q ballots at random, B outputs (x, π, wguilt) to the experiment, where
x = (c, pk) and wguilt = dk. Since q is polynomial in n this gives B a non-negligible
probability of winning the experiment. ut

Theorem 5. The scheme ΠREF satisfies ballot privacy.

Proof. We will prove that A can not do better than guess the value of b in the
ballot privacy experiment via a series of hybrid games. We exploit the fact that
the (G,P,V) argument system achieves statistical zero-knowledge, the fact that
(K, E ,D) is IND-CPA secure as well as the delay on the bulletin board. We also
take advantage of the fact that in a referendum the number of possible results is
linear in the number of votes.

We will focus on the VoteOracle calls that the adversary makes, as that is
where the experiment diverges depending on b. Let qv,qb be upper bounds on the
number of VoteOracle and BallotOracle queries made by A for a particular
security parameter n. Let qΣ = qv + qb be the total number of queries.

We define as Exp2 the experiment ExpBPΠREF ,A where all VoteOracle calls
produce a ballot with a simulated proof π instead of a real one. We also define
a series of hybrid games H1

i for i ∈ {0, qv} in which the first i VoteOracle
calls produce a ballot with a simulated proof π instead of a real one. Via a
straightforward hybrid argument, if A can distinguish between Exp2 = H1

qv and

ExpBPΠREF ,A = H1
0 with a non-negligible probability there must be a value of i

such that he can distinguish H1
i and H1

i+1. This contradicts the honest verifier
zero knowledge property of (G,P,V), since for all i, H1

i and H1
i+1 differ (at most)

only in a single proof transcript. Thus A wins Exp2 with probability negligibly
close to ExpBPΠREF ,A.

We also define a series of hybrid games H2
i for i ∈ {0, qv} as Exp2 in which

the first i VoteOracle calls operate as if b = 1 and the rest as if b = 0. If A can
win Exp2 with non-negligible probability, he can distinguish between H2

0 and
H2
qv and thus there must be a value of i such that A can distinguish H2

i and
H2
i+1.

Let the variable RES be the sum of the votes contained in ballots with correct
proofs which appear in the bulletin board BB′ before CheckBoard is called.
We note that RES only takes values in {0, . . . , qΣ}.

Let p(n) be a polynomial such that A can distinguish between H2
i and H2

i+1

with probability at least 1
2 + 1

p(n) for an infinite number of n ∈ N. We will

construct an adversary B that can obtain non-negligible advantage against the
IND-CPA security of (K, E ,D) by simulating an election against A. Initially B
obtains a public key ek from the IND-CPA experiment and completes the setup
as normal, obtaining (pk, vk) from G. B proceeds by following ΠREF with the
following difference: the first i VoteOracle calls operate as if b = 1. The next
VoteOracle (which we can assume w.l.o.g to be v∗ = 1) is answered as if it
was successful, but B does not update BB. Afterwards, before CheckBoard is
called, the experiment is suspended and the state st of A is saved along with the
bulletin boards and keys as σ = (ek, (pk, vk), st, BB,BB′). B does not know the
value of RES, but knows that it takes values in {0, . . . , qΣ}.

Let Exp3(σ, v, r), where σ = (ek, (pk, vk), st, BB,BB′) be the following
experiment: Produce B∗ as a fresh ballot (with simulated proof) containing v,
add B∗ to BB, restore the adversary’s state to st and resume the voting protocol
starting at CheckBoard. The Tally query is answered with r. The result of the
experiment is v == b̂ where b̂ is A’s reply.

We note when r = RES, Exp3(σ, v, r) produces the same output as H2
i or

H2
i+1 depending only on v. We call a saved state σ “good” if A has a non-negligible

advantage in distinguishing Exp3(σ, 0, RES) from Exp3(σ, 1, RES), where RES
is determined uniquely by BB′. Because A can distinguish between H2

i and H2
i+1,

a state created by B must be “good” with non-negligible probability.

B repeats the following n · p(n) times: run Exp3(σ, v, r) for all combinations
of v ∈ {0, 1} and r ∈ {0, . . . , qΣ}.

Afterwards, B can determine the value of r for which A has best distinguished
between v = 0 and 1. We note that because the true value of RES is included in
the iterations, if σ is a “good” state, there is a value of r for which A achieves at
least 1

p(n) advantage in distinguishing v, and after n · p(n) experiments Chernoff-

bounds show that B has a good estimate of A’s advantage for each value of
r.

After determining the optimal value of r, B will send (0, 1) to the IND-CPA
experiment and obtain a challenge ciphertext ĉ. B produces a simulated proof
π̂ for c, adds B̂ to the saved board and resumes the experiment a final time. B
finally forwards the reply of A to the IND-CPA experiment.

Because B will proceed without restarting with non-negligible probability,
it runs in expected polynomial time. Because with overwhelming probability B
proceeds only when σ is a “good” state, the advantage in distinguishing whether
c contains 0 or 1 is non-negligible. ut

References

1. Ben Adida. Helios: Web-based open-audit voting. In Security Symposium, SS’08,
pages 335–348. USENIX Association, 2008.

2. Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally
composable protocols with relaxed set-up assumptions. In Foundations of Computer
Science, FOCS ’04, pages 186–195. IEEE, 2004.

3. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Computer and Communications Security, pages
62–73. ACM, 1993.

4. David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan
Warinschi. Adapting Helios for provable ballot privacy. In Computer Security–
ESORICS 2011, pages 335–354. Springer, 2011.

5. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications. In Theory of Computing, STOC ’88, pages 103–112. ACM,
1988.

6. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

7. Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène.
Distributed ElGamal á la Pedersen: Application to Helios. In Privacy in the
Electronic Society, WPES ’13, pages 131–142. ACM, 2013.

8. Ronald Cramer and Victor Shoup. A practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. In Advances in Cryptology—CRYPTO’98,
pages 13–25. Springer, 1998.

9. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Advances in Cryptology—
EUROCRYPT 2002, pages 45–64. Springer, 2002.

10. Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with preprocessing. In Advances in cryptology—EUROCRYPT’92,
pages 341–355. Springer, 1992.

11. Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge
from homomorphic encryption. In Theory of Cryptography, pages 41–59. Springer,
2006.

12. Ivan Damg̊ard, Mads Jurik, and Jesper Buus Nielsen. A generalization of Paillier’s
public-key system with applications to electronic voting. International Journal of
Information Security, 9(6):371–385, 2010.

13. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Advances in Cryptology—CRYPTO’86, pages
186–194. Springer, 1987.

14. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Advances in Cryptology—
EUROCRYPT 2013, pages 626–645. Springer, 2013.

15. Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam
Smith. Using fully homomorphic hybrid encryption to minimize non-interative
zero-knowledge proofs. Journal of Cryptology, pages 1–24, 2014.

16. Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In Foundations of Computer Science, FOCS ’03, pages 102–113. IEEE,
2003.

17. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on computing, 18(1):186–208, 1989.

18. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In Advances in Cryptology–ASIACRYPT 2006, pages 444–459.
Springer, 2006.

19. Jens Groth. Short non-interactive zero-knowledge proofs. In Advances in Cryptology–
ASIACRYPT 2010, pages 341–358. Springer, 2010.

20. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Advances in Cryptology–ASIACRYPT 2010, pages 321–340. Springer, 2010.

21. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive
zero-knowledge. Journal of the ACM, 59(3):11:1–11:35, 2012.

22. Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear
groups. SIAM Journal on Computing, 41(5):1193–1232, 2012.

23. Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier
proofs and their applications. In Advances in Cryptology—EUROCRYPT’96, pages
143–154. Springer, 1996.

24. Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof
system for NP with general assumptions. Journal of Cryptology, 11(1):1–27, 1998.

25. Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In Theory of Computing, STOC 2013, pages 427–437.
ACM, 1990.

26. Tatsuaki Okamoto and Shigenori Uchiyama. A new public-key cryptosystem as
secure as factoring. In Advances in cryptology—EUROCRYPT’98, pages 308–318.
Springer, 1998.

27. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In Security and Privacy, pages 238–252. IEEE,
2013.

28. Carmine Ventre and Ivan Visconti. Co-sound zero-knowledge with public keys. In
Progress in Cryptology–AFRICACRYPT 2009, pages 287–304. Springer, 2009.

29. Douglas Wikström. Simplified submission of inputs to protocols. In Security and
Cryptography for Networks, pages 293–308. Springer, 2008.

