267 research outputs found

    Fermionic projected entangled-pair states and topological phases

    Get PDF
    We study fermionic matrix product operator algebras and identify the associated algebraic data. Using this algebraic data we construct fermionic tensor network states in two dimensions that have non-trivial symmetry-protected or intrinsic topological order. The tensor network states allow us to relate physical properties of the topological phases to the underlying algebraic data. We illustrate this by calculating defect properties and modular matrices of supercohomology phases. Our formalism also captures Majorana defects as we show explicitly for a class of Z2\mathbb{Z}_2 symmetry-protected and intrinsic topological phases. The tensor networks states presented here are well-suited for numerical applications and hence open up new possibilities for studying interacting fermionic topological phases.Comment: Published versio

    Fermionic matrix product states and one-dimensional topological phases

    Get PDF
    We develop the formalism of fermionic matrix product states (fMPS) and show how irreducible fMPS fall in two different classes, related to the different types of simple Z(2) graded algebras, which are physically distinguished by the absence or presence of Majorana edge modes. The local structure of fMPS with Majorana edge modes also implies that there is always a twofold degeneracy in the entanglement spectrum. Using the fMPS formalism, we make explicit the correspondence between the Z(8) classification of time-reversal-invariant spinless superconductors and the modulo 8 periodicity in the representation theory of real Clifford algebras. Studying fMPS with general onsite unitary and antiunitary symmetries allows us to define invariants that label symmetry-protected phases of interacting fermions. The behavior of these invariants under stacking of fMPS is derived, which reveals the group structure of such interacting phases. We also consider spatial symmetries and show how the invariant phase factor in the partition function of reflection-symmetric phases on an unorientable manifold appears in the fMPS framework

    Chiroptical studies on brevianamide B : vibrational and electronic circular dichroism confronted

    Get PDF
    Chiroptical spectroscopy, such as electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) are highly sensitive techniques to probe molecular conformation, configuration, solvation and aggregation. Here we report the application of these techniques to study the fungal metabolite brevianamide B. Comparison of the experimental ECD and VCD spectra with the density functional theory (DFT) simulated counterparts establishes that VCD is the more reliable technique to assign absolute configuration due to the larger functional and dispersion dependence of computed ECD spectra. Despite a low amount of available material, and a relatively unusual example of using VCD carbonyl multiplets, the absolute configuration could be reliably predicted, strengthening the case for application of VCD in the study of complex natural products. Spectral and crystallographic evidence for or against the formation of a dimeric aggregate is discussed; in solution the VCD spectra strongly suggest only monomeric species are present

    Mapping topological to conformal field theories through strange correlators

    Get PDF
    We extend the concept of strange correlators, defined for symmetry-protected phases in [You et al., Phys. Rev. Lett. 112, 247202 (2014)], to topological phases of matter by taking the inner product between string-net ground states and product states. The resulting two-dimensional partition functions are shown to be either critical or symmetry broken, as the corresponding transfer matrices inherit all matrix product operator symmetries of the string-net states. For the case of critical systems, those non-local matrix product operator symmetries are the lattice remnants of topological conformal defects in the field theory description. Following [Aasen et al., J. Phys. A 49, 354001 (2016)], we argue that the different conformal boundary conditions can be obtained by applying the strange correlator concept to the different topological sectors of the string-net obtained from Ocneanu's tube algebra. This is demonstrated by calculating the conformal field theory spectra on the lattice in the different topological sectors for the Fibonacci/hard-hexagon and Ising string-net. Additionally, we provide a complementary perspective on symmetry-preserving real-space renormalization by showing how known tensor network renormalization methods can be understood as the approximate truncation of an exactly coarse-grained strange correlator

    Projected seniority-two orbital optimization of the Antisymmetric Product of one-reference orbital Geminal

    Full text link
    We present a new, non-variational orbital-optimization scheme for the Antisymmetric Product of one-reference orbital Geminal wave function. Our approach is motivated by the observation that an orbital-optimized seniority-zero configuration interaction (CI) expansion yields similar results to an orbital-optimized seniority-zero-plus-two CI expansion [J. Chem. Phys., 135, 044119 (2011)]. A numerical analysis is performed for the C2_2, LiF and CH2_2 molecules as well as for the symmetric stretching of hypothetical (linear) hydrogen chains. For these test cases, the proposed orbital-optimization protocol yields similar results to its variational orbital optimization counterpart, but prevents symmetry-breaking of molecular orbitals in most cases.Comment: 7 pages, 2 figure

    Matrix product operators for symmetry-protected topological phases: Gauging and edge theories

    Get PDF
    Projected entangled pair states (PEPS) provide a natural ansatz for the ground states of gapped, local Hamiltonians in which global characteristics of a quantum state are encoded in properties of local tensors. We develop a framework to describe on-site symmetries, as occurring in systems exhibiting symmetry-protected topological (SPT) quantum order, in terms of virtual symmetries of the local tensors expressed as a set of matrix product operators (MPOs) labeled by distinct group elements. These MPOs describe the possibly anomalous symmetry of the edge theory, whose local degrees of freedom are concretely identified in a PEPS. A classification of SPT phases is obtained by studying the obstructions to continuously deforming one set of MPOs into another, recovering the results derived for fixed-point models [X. Chen et al., Phys. Rev. B 87, 155114 (2013)]. Our formalism accommodates perturbations away from fixed point models, opening the possibility of studying phase transitions between different SPT phases. We also demonstrate that applying the recently developed quantum state gauging procedure to a SPT PEPS yields a PEPS with topological order determined by the initial symmetry MPOs. The MPO framework thus unifies the different approaches to classifying SPT phases, via fixed-points models, boundary anomalies, or gauging the symmetry, into the single problem of classifying inequivalent sets of matrix product operator symmetries that are defined purely in terms of a PEPS.Comment: 16 + 19 pages, 13 figures; v2 substantial changes to all sections, new appendices added; v3 published versio

    Method For Making 2-Electron Response Reduced Density Matrices Approximately N-representable

    Get PDF
    In methods like geminal-based approaches or coupled cluster that are solved using the projected Schr\"odinger equation, direct computation of the 2-electron reduced density matrix (2-RDM) is impractical and one falls back to a 2-RDM based on response theory. However, the 2-RDMs from response theory are not NN-representable. That is, the response 2-RDM does not correspond to an actual physical NN-electron wave function. We present a new algorithm for making these non-NN-representable 2-RDMs approximately NN-representable, i.e. it has the right symmetry and normalization and it fulfills the PP-, QQ- and GG-conditions. Next to an algorithm which can be applied to any 2-RDM, we have also developed a 2-RDM optimization procedure specifically for seniority-zero 2-RDMs. We aim to find the 2-RDM with the right properties that is the closest (in the sense of the Frobenius norm) to the non-N-representable 2-RDM by minimizing the square norm of the difference between the initial 2-RDM and the targeted 2-RDM under the constraint that the trace is normalized and the 2-RDM, QQ- and GG-matrices are positive semidefinite, i.e. their eigenvalues are non-negative. Our method is suitable for fixing non-N-respresentable 2-RDMs which are close to being N-representable. Through the N-representability optimization algorithm we add a small correction to the initial 2-RDM such that it fulfills the most important N-representability conditions.Comment: 13 pages, 8 figure

    Resurgence of superconductivity and the role of dxy hole band in FeSe1−x_{1−x}Tex_x

    Get PDF
    Iron-chalcogenide superconductors display rich phenomena caused by orbital-dependent band shifts and electronic correlations. Additionally, they are potential candidates for topological superconductivity due to the band inversion between the Fe d bands and the chalcogen pz_z band. Here we present a detailed study of the electronic structure of the nematic superconductors FeSe1−x_{1−x}Tex_x (0 < x < 0.4) using angle-resolved photoemission spectroscopy to understand the role of orbital-dependent band shifts, electronic correlations and the chalcogen band. We assess the changes in the effective masses using a three-band low energy model, and the band renormalization via comparison with DFT band structure calculations. The effective masses decrease for all three-hole bands inside the nematic phase, followed by a strong increase for the band with dxy_{xy} orbital character. Interestingly, this nearly-flat dxy_{xy} band becomes more correlated as it shifts towards the Fermi level with increasing Te concentrations and as the second superconducting dome emerges. Our findings suggests that the dxy_{xy} hole band, which is very sensitive to the chalcogen height, could be involved in promoting an additional pairing channel and increasing the density of states to stabilize the second superconducting dome in FeSe1−x_{1−x}Tex_x. This simultaneous shift of the dxy_{xy} hole band and enhanced superconductivity is in contrast with FeSe1−x_{1−x}Sx_x
    • …
    corecore