17 research outputs found

    Homomorphisms from functional equations: the Goldie equation

    Get PDF
    The theory of regular variation, in its Karamata and Bojani´c-Karamata/de Haan forms, is long established and makes essential use of the Cauchy functional equation. Both forms are subsumed within the recent theory of Beurling regular variation, developed elsewhere. Various generalizations of the Cauchy equation, including the Gołab–Schinzel functional equation (GS) and Goldie's equation (GBE) below, are prominent there. Here we unify their treatment by algebraicization: extensive use of group structures introduced by Popa and Javor in the 1960s turn all the various (known) solutions into homomorphisms, in fact identifying them 'en passant', and show that (GS) is present everywhere, even if in a thick disguise

    Orthogonalities and functional equations

    Get PDF
    In this survey we show how various notions of orthogonality appear in the theory of functional equations. After introducing some orthogonality relations, we give examples of functional equations postulated for orthogonal vectors only. We show their solutions as well as some applications. Then we discuss the problem of stability of some of them considering various aspects of the problem. In the sequel, we mention the orthogonality equation and the problem of preserving orthogonality. Last, but not least, in addition to presenting results, we state some open problems concerning these topics. Taking into account the big amount of results concerning functional equations postulated for orthogonal vectors which have appeared in the literature during the last decades, we restrict ourselves to the most classical equations
    corecore