186 research outputs found

    The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls

    Get PDF
    Background: Mood disorders (including major depressive disorder and bipolar disorder) affect 10% to 20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Multiple approaches have shown considerable sharing of risk factors across mood disorders despite their diagnostic distinction. / Methods: To clarify the shared molecular genetic basis of major depressive disorder and bipolar disorder and to highlight disorder-specific associations, we meta-analyzed data from the latest Psychiatric Genomics Consortium genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; nonoverlapping N = 609,424). / Results: Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More loci from the Psychiatric Genomics Consortium analysis of major depression than from that for bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single-episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment—the relationship is positive in bipolar disorder but negative in major depressive disorder. / Conclusions: The mood disorders share several genetic associations, and genetic studies of major depressive disorder and bipolar disorder can be combined effectively to enable the discovery of variants not identified by studying either disorder alone. However, we demonstrate several differences between these disorders. Analyzing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease.

    Get PDF
    Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson's disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson's disease

    Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription.

    Get PDF
    DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event

    Obesity remodels activity and transcriptional state of a lateral hypothalamic brake on feeding

    Get PDF
    The current obesity epidemic is a major worldwide health concern. Despite the consensus that the brain regulates energy homeostasis, the neural adaptations governing obesity are unknown. Using a combination of high-throughput single-cell RNA sequencing and longitudinal in vivo two-photon calcium imaging, we surveyed functional alterations of the lateral hypothalamic area (LHA) - a highly conserved brain region that orchestrates feeding - in a mouse model of obesity. The transcriptional profile of LHA glutamatergic neurons was affected by obesity, exhibiting changes indicative of altered neuronal activity. Encoding properties of individual LHA glutamatergic neurons were then tracked throughout obesity, revealing greatly attenuated reward responses.These data demonstrate how diet disrupts the function of an endogenous feeding suppression system to promote overeating and obesity

    Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects

    Get PDF
    Genome-wide association studies (GWAS) for schizophrenia have identified over 100 loci encoding >500 genes. It is unclear whether any of these genes, other than dopamine receptor D 2, are immediately relevant to antipsychotic effects or represent novel antipsychotic targets. We applied an in vivo molecular approach to this question by performing RNA sequencing of brain tissue from mice chronically treated with the antipsychotic haloperidol or vehicle. We observed significant enrichments of haloperidol-regulated genes in schizophrenia GWAS loci and in schizophrenia-associated biological pathways. Our findings provide empirical support for overlap between genetic variation underlying the pathophysiology of schizophrenia and the molecular effects of a prototypical antipsychotic

    Genome-wide analysis identifies molecular systems and 149 genetic loci associated with income

    Get PDF
    Abstract: Socioeconomic position (SEP) is a multi-dimensional construct reflecting (and influencing) multiple socio-cultural, physical, and environmental factors. In a sample of 286,301 participants from UK Biobank, we identify 30 (29 previously unreported) independent-loci associated with income. Using a method to meta-analyze data from genetically-correlated traits, we identify an additional 120 income-associated loci. These loci show clear evidence of functionality, with transcriptional differences identified across multiple cortical tissues, and links to GABAergic and serotonergic neurotransmission. By combining our genome wide association study on income with data from eQTL studies and chromatin interactions, 24 genes are prioritized for follow up, 18 of which were previously associated with intelligence. We identify intelligence as one of the likely causal, partly-heritable phenotypes that might bridge the gap between molecular genetic inheritance and phenotypic consequence in terms of income differences. These results indicate that, in modern era Great Britain, genetic effects contribute towards some of the observed socioeconomic inequalities

    Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa

    Get PDF
    Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness1, affecting 0.9-4% of women and 0.3% of men2-4, with twin-based heritability estimates of 50-60%5. Mortality rates are higher than those in other psychiatric disorders6, and outcomes are unacceptably poor7. Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)8,9 and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes
    • 

    corecore