33 research outputs found

    Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks

    Get PDF
    Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The •OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism

    Biological functions of selenium and its potential influence on Parkinson's disease

    Full text link

    Evidence that dimers remaining in preinduced Escherichia coli B/r Hcr+ become insensitive after DNA replication to the extract from Micrococcus luteus.

    Get PDF
    In Escherichia coli B/r Her+ irradiated with two separate fluences, dimer excision is prematurely interrupted. The present study was designed to follow tha fate of dimers remaining unexcised. The results imply that these dimers (or distortions containing dimers) are transformed on replication from the state of sensitivity to the state of insensitivity to endonuclease from Micrococcus luteus. This conclusion is based on the following findings: (a) dimers were radiochromatographically detectable in DNA replicated after UV, which indicated that they were tolerated on replication. (b) Similar amounts of dimers were detected radiochromatographically both in DNA remaining unreplicated and DNA twice replicated after UV, This along with the low transfer of parental label into daughter DNA, indicated that dimers remained in situ in parental chains. (c) Immediately after UV, all parental DNA contained numerous sites sensitive to the extract from M. luteus. 2 h after UV, a portion of parental DNA still contained a number of endonuclease-sensitive (Es) sites, while another portion of parental DNA and all daughter DNA were free of Es sites. (d) The occurrence of parental DNA free of Es sites was not temporally correlated with dimer excision, but with the first round of DNA replication. (e) The amount of DNA free of Es sites corresponded to the amount of replicated DNA. (f) Separation of replicated and unreplicated DNA, and detection of Es sites in both portions separately showed that the replicated DNA was almost free of Es sites, whereas unreplicated DNA contained a number of such sites

    Effect of bacterial recA expression on DNA repair in the rad51 and rad52 mutants of Saccharomyces cerevisiae

    No full text
    Molecular and functional homology between yeast proteins pRad51 and pRad52 and Escherichia coli pRecA involved in recombinational DNA repair led us to investigate possible effects of recA gene expression on DNA repair in rad51 and rad52 mutants of Saccharomyces cerevisiae. The mutant cells were subjected to one of the following treatments: preincubation with 8-methoxypsoralen and subsequent irradiation with 360-nm ultraviolet (UVA) (8-MOP + UVA), irradiation with 254-nm UV light or treatment with methyl methane sulfonate (MMS). While recA expression did not repair lethal DNA lesions in mutant rad51, it was able to partially restore resistance to 8-MOP + UVA and MMS in rad52. Expression of recA could not complement the sensitivity of rad51rad52 double mutants, indicating that pRad51 may be essential for the repair-stimulating activity of pRecA in the rad52 mutant. Spontaneous mutagenesis was increased, and 8-MOP-photoinduced mutagenesis was decreased by the presence of pRecA in rad52, whereas pRecA decreased UV-induced mutagenesis in rad51. Thus, pRecA may function in yeast DNA repair either as a member of a protein complex or as an individual protein that binds to mutagen-damaged DNA.<br>A homologia tanto a nível molecular como funcional entre as proteínas de leveduras pRad51 e pRad52 envolvidas na reparação de DNA tipo recombinacional e pRecA de E. coli nos levou a analisar os possíveis efeitos da expressão do gene recA sobre a reparação de DNA nos mutantes rad51 e rad52 de S. cerevisiae após tratamento com 8-MOP + UVA, com UV e com MMS. A expressão de recA não foi capaz de restaurar a reparação das lesões induzidas no DNA do mutante rad51 após tratamento com esses agentes, entretanto ela restaurou parcialmente a resistência ao 8-MOP + UVA e ao MMS no mutante rad52. A expressão de recA não complementou a sensibilidade do duplo mutante rad51rad52, indicando que pRad51 pode ser essencial para estimular a atividade de reparação da pRecA no mutante rad52. A presença de pRecA no mutante rad52 aumentou a mutagênese espontânea e reduziu a mutagênese fotoinduzida pelo 8-MOP, enquanto que a pRecA diminuiu a mutagênese induzida pela UV no mutante rad51. Conseqüentemente, no reparo de DNA em levedura, a pRecA pode funcionar tanto como membro de um complexo protéico ou como uma proteína individual que se liga à lesão no DNA provocada pelo agente mutagênico
    corecore