7,303 research outputs found

    Exact solutions to Pauli-Villars-regulated field theories

    Get PDF
    We present a new class of quantum field theories which are exactly solvable. The theories are generated by introducing Pauli-Villars fermionic and bosonic fields with masses degenerate with the physical positive metric fields. An algorithm is given to compute the spectrum and corresponding eigensolutions. We also give the operator solution for a particular case and use it to illustrate some of the tenets of light-cone quantization. Since the solutions of the solvable theory contain ghost quanta, these theories are unphysical. However, we also discuss how perturbation theory in the difference between the masses of the physical and Pauli-Villars particles could be developed, thus generating physical theories. The existence of explicit solutions of the solvable theory also allows one to study the relationship between the equal-time and light-cone vacua and eigensolutions.Comment: 20 pages, REVTeX; minor corrections to normalization

    Hadron Spectroscopy and Structure from AdS/CFT

    Get PDF
    The AdS/CFT correspondence between conformal field theory and string states in an extended space-time has provided new insights into not only hadron spectra, but also their light-front wavefunctions. We show that there is an exact correspondence between the fifth-dimensional coordinate of anti-de Sitter space and a specific impact variable which measures the separation of the constituents within the hadron in ordinary space-time. This connection allows one to predict the form of the light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and scattering amplitudes. A new relativistic Schrodinger light-front equation is found which reproduces the results obtained using the fifth-dimensional theory. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can be used as an initial ansatz for a variational treatment or as a basis for the diagonalization of the light-front QCD Hamiltonian. A number of applications of light-front wavefunctions are also discussed.Comment: Invited talk, presented at the 4th International Conference On Quarks And Nuclear Physics (QNP06), 5-10 June 2006, Madrid, Spai

    Applications of Light-Front QCD

    Full text link
    Light-front Fock state wavefunctions encode the bound state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions. The AdS/CFT correspondence of large N_C supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes. String/gauge duality also predicts the QCD power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. The form of these near-conformal wavefunctions can be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian. I also briefly review recent work which shows that some leading-twist phenomena such as the diffractive component of deep inelastic scattering, single spin asymmetries, nuclear shadowing and antishadowing cannot be computed from the LFWFs of hadrons in isolation.Comment: Presented at QCD DOWN UNDER, 10--13 March 2004 in the Barossa Valley, 15--19 March 2004 at CSSM, Adelaide, Australi

    Dynamic versus Static Hadronic Structure Functions

    Get PDF
    "Static" structure functions are the probabilistic distributions computed from the square of the light-front wavefunctions of the target hadron. In contrast, the "dynamic" structure functions measured in deep inelastic lepton-hadron scattering include the effects of rescattering associated with the Wilson line. Initial- and final-state rescattering, neglected in the parton model, can have a profound effect in QCD hard-scattering reactions, producing single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing, and non-universal nuclear antishadowing--novel leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also review how "direct" higher-twist processes -- where a proton is produced in the hard subprocess itself -- can explain the anomalous proton-to-pion ratio seen in high centrality heavy ion collisions.Comment: Invited talk presented at the International Conference on Particles and Nuclei (PANIC08), Eilat, Israel, November 9-14, 200

    Final-State Interactions and Single-Spin Asymmetries in Semi-Inclusive Deep Inelastic Scattering

    Get PDF
    Recent measurements from the HERMES and SMC collaborations show a remarkably large azimuthal single-spin asymmetries A_{UL} and A_{UT} of the proton in semi-inclusive pion leptoproduction. We show that final-state interactions from gluon exchange between the outgoing quark and the target spectator system lead to single-spin asymmetries in deep inelastic lepton-proton scattering at leading twist in perturbative QCD; i.e., the rescattering corrections are not power-law suppressed at large photon virtuality Q^2 at fixed x_{bj}. The existence of such single-spin asymmetries requires a phase difference between two amplitudes coupling the proton target with J^z_p = + 1/2 and -1/2 to the same final state, the same amplitudes which are necessary to produce a nonzero proton anomalous magnetic moment. We show that the exchange of gauge particles between the outgoing quark and the proton spectators produces a Coulomb-like complex phase which depends on the angular momentum L_z of the proton's constituents and is thus distinct for different proton spin amplitudes. The single-spin asymmetry which arises from such final-state interactions does not factorize into a product of distribution function and fragmentation function, and it is not related to the transversity distribution delta q(x,Q) which correlates transversely polarized quarks with the spin of the transversely polarized target nucleon.Comment: Version to appear in Physics Letters B. Typographical errors corrected in Eqs. (13) and (14

    New Results in Light-Front Phenomenology

    Full text link
    The light-front quantization of gauge theories such as QCD in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions and to define a kinematical definition of angular momentum. The AdS/CFT correspondence of large NCN_C supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes. String/gauge duality also predicts the QCD power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. The form of these near-conformal wavefunctions can be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian. I also briefly review recent analyses which shows that some leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing cannot be computed from the LFWFs of hadrons in isolation.Comment: Presented at LightCone 2004, Amsterdam, The Netherlands, 16-20 August 200

    Light-Front Holography, AdS/QCD, and Hadronic Phenomena

    Get PDF
    AdS/QCD, the correspondence between theories in a modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate zz with an invariant light-front coordinate ζ\zeta which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schr\"odinger equation with a confining potential which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. The distinction between static structure functions, such as the probability distributions computed from the square of the light-front wavefunctions, versus dynamical structure functions which include the effects of rescattering, is emphasized. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.Comment: 11 pages, 3 figures. Talk presented by SJB at Light Cone 2009: Relativistic Hadronic And Particle Physics, 8-13 Jul 2009, Sao Jose dos Campos, Brazi

    Perspectives on EPIC Physics

    Get PDF
    An electron-proton/ion polarized beam collider (EPIC) with high luminosity and center-of-mass energy s=25\sqrt s = 25 GeV would be a valuable facility for fundamental studies of proton and nuclear structure and tests of quantum chromodynamics, I review a sample of prospective EPIC topics, particularly semi-exclusive reactions, studies of the proton fragmentation region, heavy quark electroproduction, and a new probe of odderon/pomeron interference.Comment: Talk presented at EPIC'99 Workshop, Indiana University, April 199

    Novel QCD Phenomena

    Get PDF
    I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable zeta which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high-centrality heavy-ion collisions.Comment: Invited talk presented at the Workshop on High PT Physics at the LHC (LHC07), Jyvaskyla, Finland, 23-27 March 2007; typos corrected; added reference;resolution of figures improve
    • …
    corecore