5 research outputs found
Biogenesis of medium-chain-length polyhydroxyalkanoates
26 p.-3 fig.-2 tab.Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biotechnologically useful natural products found in many bacteria. This biopolymer functions as a carbon and energy storage reservoir in cells but has physical and mechanical properties that make it a promising bioplastic with applications ranging from adhesives to medical implants. Therefore, there is much interest in understanding the biology of mcl-PHA synthesis and metabolism. Increased knowledge of PHA biology serves as a foundation for the bioengineering of PHA and its eventual use as a biologically derived product. This chapter covers the state of knowledge on mcl-PHA, including its synthesis and its central role in cellular metabolism. Moreover, this chapter discusses methods for bioengineering mcl-PHA production in bacteria as well as synthetic biology methods for its study and production in the natural mcl-PHA producer, Pseudomonas putida.Research on polymer biotechnology in the laboratory of M. Auxiliadora Prieto is supported by funding from the European Union’s Horizon 2020 research and innovation program under grant agreements number 633962 and 679050. We also acknowledge support from the Community of Madrid (P2013/MIT2807) and the Spanish Ministry of Economy (BIO201344878R, BIO2014-61515-EXP).Peer reviewedPostprin
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes
International audienceMembrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semiautonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show Josselin Lupette and Eric Maréchal contributed equally with all other contributors