494 research outputs found

    Advantage of four-electrode over two-electrode defibrillators

    Get PDF
    Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish the normal heart rate. We propose a new technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of such a new technique. We compare three different shock protocols, namely, a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80 % in the energy required for a defibrillation success rate of 90 %. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock

    Impurity-related intraband absorption in coupled quantum dot-ring structure under lateral electric field

    Get PDF
    The effects of a lateral electric field on intraband absorption in GaAs/GaAlAs two-dimensional coupled quantum dot-ring structure with an on-centre hydrogenic donor impurity is investigated. The confining potential of the system consists of two parabolas with various confinement energies. The calculations are made using the exact diagonalization technique. A selection rule for intraband transitions was found for x-polarized incident light. The absorption spectrum mainly exhibits a redshift with the increment of electric field strength. On the other hand, the absorption spectrum can exhibit either a blue- or redshift depending on the values of confinement energies of dot and ring. Additionally, electric field changes the energetic shift direction influenced by the variation of barrier thickness of the structure

    Detecting unstable periodic spatio-temporal states of spatial extended chaotic systems

    Full text link
    The method of detection of the unstable periodic spatio-temporal states of spatial extended chaotic systems has been proposed. The application of this method is illustrated by the consideration of two different systems: i) the fluid model of Pierce diode being one of the fundamental system of the physics of plasmas and microwave electronics and ii) the complex one-dimensional Ginzburg-Landau equation demonstrating different regimes of spatio-temporal chaos.Comment: 6 pages, 7 figure

    Phase instabilities in hexagonal patterns

    Get PDF
    The general form of the amplitude equations for a hexagonal pattern including spatial terms is discussed. At the lowest order we obtain the phase equation for such patterns. The general expression of the diffusion coefficients is given and the contributions of the new spatial terms are analysed in this paper. From these coefficients the phase stability regions in a hexagonal pattern are determined. In the case of Benard-Marangoni instability our results agree qualitatively with numerical simulations performed recently.Comment: 6 pages, 6 figures, to appear in Europhys. Let

    Dissipative Dynamics of an Open Bose Einstein Condensate

    Full text link
    As an atomic Bose Einstein condensate (BEC) is coupled to a source of uncondensed atoms at the same temperature and to a sink (extraction towards an atom laser) the idealized description in terms of a Gross-Pitaevsky equation (GP) no longer holds. Under suitable physical assumptions we show that the dissipative BEC obeys a Complex Ginzburg Landau equation (CGL) and for some parameter range it undergoes a space time patterning. As a consequence, the density of BEC atoms within the trap displays non trivial space time correlations, which can be detected by monitoring the density profile of the outgoing atom laser. The patterning condition requires a negative scattering length, as e.g. in 7^7Li. In such a case we expect a many domain collapsed regime, rather than a single one as reported for a closed BEC.Comment: 13 pages, 5 figures, submitt. to Optics Comm., 18th Aug. 99 (special issue Scully Festschrift

    Extended bidomain modeling of defibrillation: quantifying virtual electrode strengths in fibrotic myocardium

    Get PDF
    Defibrillation is a well-established therapy for atrial and ventricular arrhythmia. Here, we shed light on defibrillation in the fibrotic heart. Using the extended bidomain model of electrical conduction in cardiac tissue, we assessed the influence of fibrosis on the strength of virtual electrodes caused by extracellular electrical current. We created one-dimensional models of rabbit ventricular tissue with a central patch of fibrosis. The fibrosis was incorporated by altering volume fractions for extracellular, myocyte and fibroblast domains. In our prior work, we calculated these volume fractions from microscopic images at the infarct border zone of rabbit hearts. An average and a large degree of fibrosis were modeled. We simulated defibrillation by application of an extracellular current for a short duration (5 ms). We explored the effects of myocyte-fibroblast coupling, intra-fibroblast conductivity and patch length on the strength of the virtual electrodes present at the borders of the normal and fibrotic tissue. We discriminated between effects on myocyte and fibroblast membranes at both borders of the patch. Similarly, we studied defibrillation in two-dimensional models of fibrotic tissue. Square and disk-like patches of fibrotic tissue were embedded in control tissue. We quantified the influence of the geometry and fibrosis composition on virtual electrode strength. We compared the results obtained with a square and disk shape of the fibrotic patch with results from the one-dimensional simulations. Both, one- and two-dimensional simulations indicate that extracellular current application causes virtual electrodes at boundaries of fibrotic patches. A higher degree of fibrosis and larger patch size were associated with an increased strength of the virtual electrodes. Also, patch geometry affected the strength of the virtual electrodes. Our simulations suggest that increased fibroblast-myocyte coupling and intra-fibroblast conductivity reduce virtual electrode strength. However, experimental data to constrain these modeling parameters are limited and thus pinpointing the magnitude of the reduction will require further understanding of electrical coupling of fibroblasts in native cardiac tissues. We propose that the findings from our computational studies are important for development of patient-specific protocols for internal defibrillators

    Chaotic synchronization of coupled electron-wave systems with backward waves

    Full text link
    The chaotic synchronization of two electron-wave media with interacting backward waves and cubic phase nonlinearity is investigated in the paper. To detect the chaotic synchronization regime we use a new approach, the so-called time scale synchronization [Chaos, 14 (3) 603-610 (2004)]. This approach is based on the consideration of the infinite set of chaotic signals' phases introduced by means of continuous wavelet transform. The complex space-time dynamics of the active media and mechanisms of the time scale synchronization appearance are considered.Comment: 11 pages, 7 figures, published in CHAOS, 15 (2005) 01370

    Planform selection in two-layer Benard-Marangoni convection

    Full text link
    Benard-Marangoni convection in a system of two superimposed liquids is investigated theoretically. Extending previous studies the complete hydrodynamics of both layers is treated and buoyancy is consistently taken into account. The planform selection problem between rolls, squares and hexagons is investigated by explicitly calculating the coefficients of an appropriate amplitude equation from the parameters of the fluids. The results are compared with recent experiments on two-layer systems in which squares at onset have been reported.Comment: 17 pages, 7 figures, oscillatory instability included, typos corrected, references adde

    Integral behaviour for localized synchronization in nonidentical extended systems

    Get PDF
    We report the synchronization of two nonidentical spatially extended fields, ruled by one-dimensional complex Ginzburg-Landau equations. The two fields are prepared in different dynamical regimes, and interact via an imperfect coupling consisting of a given number of local controllers Nc . The strength of the coupling is ruled by the parameter «. We show that, in the limit of three controllers per correlation length, the synchronization behavior is not affected if the product «Nc /N is kept constant, providing a sort of integral behavior for localized synchronization
    • …
    corecore