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Integral behavior for localized synchronization in nonidentical extended systems
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We report the synchronization of two nonidentical spatially extended fields, ruled by one-dimensional
complex Ginzburg-Landau equations. The two fields are prepared in different dynamical regimes, and interact
via an imperfect coupling consisting of a given number of local controllersNc . The strength of the coupling
is ruled by the parameter«. We show that, in the limit of three controllers per correlation length, the synchro-
nization behavior is not affected if the product«Nc /N is kept constant, providing a sort of integral behavior for
localized synchronization.

PACS number~s!: 05.45.Xt, 05.45.Jn, 05.45.Pq
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Synchronization of concentrated chaotic systems has b
a subject of a large body of recent investigations. In parti
lar, five levels of synchronization have been characterize
this framework, namely, complete synchronization~CS! @1#,
phase synchronization~PS! @2#, lag synchronization~LS! @3#,
generalized synchronization~GS! @4#, and almost synchroni
zation~AS! @5#. CS implies a perfect hooking of the chaot
trajectories of two systems, in such a way as they remai
step with each other in the course of the time. PS is a reg
characterized by a quasiperfect locking of the chaotic pha
not associated with any correlation in the chaotic amplitu
@2#. LS is an intermediate step between PS and CS. In
case, the two signals lock their phases and amplitudes,
with a finite-time lag@3#. GS implies the hooking of the
output of one system to a given function of the output of
other @4#. Finally, AS consists in a regime where only
subset of the variables of one system is completely sync
nized with the corresponding subset of variables of the o
system@5#.

The natural continuation of these pioneering works h
been to investigate synchronization phenomena in spat
extended systems. A first approach has been to connect
of concentrated chaotic systems by means of a given c
pling ~local or global! between the individuals constitutin
the set. In this framework, space-time chaos synchroniza
has been studied for populations of coupled dynamical s
tems @6#, for systems formed by globally coupled Ham
tonian or bistable elements@7#, and for neural networks@8#.
As for continuous space-time systems, the emergence of
chronized states has been investigated for one-dimens
chemical models@9#, and for two fields obeying identica
one-dimensional complex Ginzburg-Landau equations@10#.

At that point, the obvious question was: Is it possible
realize all different kinds of synchronization features in t
case of a coupling between nonidentical extended syste
This problem has been only recently addressed@11–14#. In
three previous papers@11,12,15#, we have investigated th
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synchronization of space-time chaotic states generated
complex Ginzburg-Landau equations~CGLE! as a result of a
spatially distributed coupling. The CGLE is known to mod
the universal pattern forming features close to the emerge
of a Hopf bifurcation@16#. It has been used to describe ma
different situations in laser physics@17#, fluid dynamics@18#,
chemical turbulence@19#, bluff body wakes@20#, etc.

The system under study is

Ȧ1,25A1,21~11 ia1,2!]x
2A1,22~11 ib1,2!uA1,2u2A1,2

1«~x!~A2,12A1,2!, ~1!

where A1,2(x,t)[r1,2(x,t)exp@ic1,2(x,t)# are two complex
fields of amplitudesr1,2 and phasesc1,2, respectively,]x

2A1,2

stays for the second derivative ofA1,2 with respect to the
space variable 0<x<L, L represents the system extensio
the dot denotes temporal derivative,a1,2,b1,2 are suitable
real control parameters,«(x) rules the strength of the sym
metric coupling, and the boundary conditions are chosen
be periodic. In the present paper we deal with localized c
plings. We should point out that both in numerical simu
tions and in practical implementations, a finite resolution
space is unavoidable, leading to a coupling that is exten
over a given spatial domainD. Therefore, one can reason
ably expect that the effect of the coupling depends stron
on the extent ofD. Since we are interested in studying
coupling whose nature is as localized as possible, we h
decided to setD equal to the mesh size. This, indeed, rep
sents the maximal spatial resolution that one can obtain
numerical simulations at a given mesh size. In order to p
vide consistent results, we have kept constant the mesh
all throughout the paper. The detailed study on the dep
dence of the synchronization features on the selected p
sion is an important point for practical implementations, a
it will be treated in detail elsewhere.

Let us now recall what has been achieved in the previ
works; in Ref.@11#, we have characterized the synchroniz
tion of two identical CGLE (a15a2 , b15b2) as a result of
a coupling in a finite numberNc of controllers, which were
selected to be equally separated in space (xi2xi 215j). The
main result obtained in Ref.@11# is that a finite number of
controllers is sufficient to warrant complete synchronizat
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FIG. 1. Case:Nc5N: Space~horizontal!-time
~vertical! plots of the modulir1 ~a, c, e, g! andr2

~b, d, f, h!. a15a252.1, b1521.2, and b2

520.83. Time increases downwards from 500
1500 ~u.t.!. The first 500 time units~not plotted!
after coupling has been started are not rep
sented. Note that the two systems were prepa
in two independent chaotic states~AT for A1 and
PT for A2). ~a! and~b! correspond to«50.05,~c!
and~d! to «50.14,~e! and~f! to «50.2, and~g!
and ~h! to «52.
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of two identical systems. This kind of phenomenon w
proved to be robust up to the limit in which a controller
placed approximately each two correlation lengthsj
<2jc), independently of the mesh size.

In Ref. @12# we were interested in the synchronization
two space-time chaotic fields coming from different dyna
ics (a1Þa2 , b1Þb2) in the case in which the couplin
function was extended on all theN mesh points of the sys
tem. The main results coming out from this analysis is
transition for small parameter mismatches from no synch
nization to complete synchronization as the local coupl
strength increases. At variance, for large parameter m
matches~e.g., if one system lays in the amplitude turbulen
regime and the other lays in the phase turbulence regime! the
above transition is mediated by a state where a kind of
was observed. This latter situation was further investiga
by us in Ref.@15#, where a space-time Fourier analysis ind
cated that the synchronization phenomenon has rather a
poral behavior than a spatial one and the intermediate s
is the one with larger variations in the mean temporal f
quencies of the two systems.

The aim of the present paper is to address two basic q
tions that were left unanswered in our previous work. T
first is how the temporal intermittencies in the spatial av
age phase differenceŝDC&x(t)[^uc1(x,t)2c2(x,t)u&x
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monitored in Ref.@15# can accommodate with a global de
crease of the space-time average of the phase differe
^DC&[^uc1(x,t)2c2(x,t)u& observed in Ref.@12#. We will
show that the synchronization at large parameter mismatc
is deteriorated by a further increase of the coupling betw
the two systems. The second crucial question is the follo
ing: having studiedlocalized (Nc,N) synchronization be-
tween identical systems@11# andextended(Nc5N) synchro-
nization between nonidentical systems@12,15#, is it possible
to extend our analysis to the case of alocalizedsynchroni-
zation between nonidentical systems? Here again, antici
ing the results which will follow, the synchronization sc
nario is not qualitatively affected in the limitj<jc provided
that the coupling strength« increasesintegrally when the
number of controllers decreases, that is the product«Nc /N is
kept constant.

Let us first illustrate theintegral behavior of the localized
synchronization between two nonequivalent space-time c
otic states. In the uncoupled case@«(x)[0# different chaotic
regimes can be identified in Eqs.~1! in different regions of
the parameter space (a,b) @21#, depending on the
stability properties of the plane-wave solutionsAq

5A12q2ei (qx1vt) @21<q<1, q being the wave number in
Fourier space,v52b2(a2b)q2]. In the parameter region
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FIG. 2. Case:Nc5N: Indica-
tors of synchronization.~a! Total
number of defects vs the couplin
strength« for A1 ~solid line! and
A2 ~dashed line!. The inset reports
the zoom at small« values. ~b!
The modulus ~solid line! and
phase~dashed line! indicators vs«
~see the text for definition!. The
modulus indicator has been mult
plied by a factor 7 in order to ge
the same vertical scale for the tw
indicators. The inset reports th
zoom at small« values.~c! S in-
dicator~see the text for definition!
vs «. The inset reports the zoom a
small « values.~d! S indicator vs
time ~in arbitrary units! for a fixed
coupling strength«51. The inset
is a zoom fromt5600 to t5800.
Parameters of Eq.~1! are the same
as in the caption of Fig. 1.
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ab.21, there exists a critical value of the wave numb
qc5A11ab/2(11b2)111ab, such that all the plane
waves in the range2qc<q<qc are linearly stable. Outside
this range, they become unstable through the so-called E
haus instability@22#. Sinceqc vanishes as the productab
approaches21, all plane waves become unstable wh
crossing from below the so-called Benjamin-Feir lineab
521 in the parameter space. Above this line, Ref.@21#
identifies three different turbulent regimes, namely, ph
turbulence~PT!, amplitude turbulence~AT! or defect turbu-
lence, and bichaos. In the following we will concentrate
PT and AT, since they have received special attention in
scientific community@23#.

PT is characterized by the fact that the chaotic behavio
the field is essentially dominated by the dynamics of
phase, whereas the amplitude changes smoothly, and
always bounded away from zero. On the contrary, in AT
amplitude dynamics becomes dominant over the phase
namics, leading to large amplitude oscillations that can
casionally cause the occurrence of a space-time defect in
point where the amplitude is locally vanishing.

For what was said above, by choosing in Eq.~1! a suffi-
ciently large parameter mismatch between the equations
erning the fieldsA1,2, one can select the uncoupled evol
tions ofA1 andA2 to be in AT and PT, respectively~in what
follows a15a252.1, b1521.2, andb2520.83). The cal-
culated correlation length in the AT case~and for a spatial
extensionL5256) isjc55.38, for the PT system, there is n
exponential decay of the spatial correlation function the
fore the correlation length cannot be defined in the us
r
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sense, still we obtain thatC(x)50.5 for x'100. In what
follows, we switch on the coupling term on a set of equ
paced controllers, and study the synchronization featu
emerging in the evolution of the two fields, as a function
the two relevant parameters, which are the coupling coe
cient « and the controllers numberNc .

As a first step, we discuss the results of the synchron
tion between the two states with a coupling coefficient tha
active for all mesh points (Nc5N). This will serve us as a
reference for the following localized case. The numeri
method used to integrate Eqs.~1! is a finite difference
method with a semi-implicit scheme for the time discretiz
tion. The lateral boundary conditions are chosen to be p
odic. The spatial extension isL5256 and the number o
mesh points areN52048. The time step isd t50.001 and the
coupling is applied at each time step. Initially, the two sy
tems A1,2 are left uncoupled in a Benjamin-Feir unstab
plane wave solution during a timet51500 in order to wash
out the initial transient and to be in a chaotic AT~for A1) and
PT state~for A2). After this initial step, the coupling is
switched on.

In Fig. 1 we report the patterns arising from the spa
time representations ofr1 ~a, c, e, g! andr2 ~b, d, f, h! for
«50.05 ~a, b!, «50.14 ~c, d!, «50.2 ~e, f!, «52 ~g, h!. At
small coupling strengths, the two systems do not synch
nize, and hold in their respective regimes as it is illustrated
Figs. 1~a! and 1~b!. At intermediate coupling@Figs. 1~c! and
1~d!#, the two systems enter both in a AT state. Some defe
(r250) are created in the systemA2. For even larger cou-
pling @Figs. 1~e! and 1~f!#, the two system return both in
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FIG. 3. Case:Nc5N/5: Space~horizontal!-
time ~vertical! plots of the modulir1 ~a, c, e, g!
andr2 ~b, d, f, h!. a15a252.1, b1521.2, and
b2520.83. Time increases downwards from 50
to 1500~u.t.!. Same general stipulations as in th
caption of Fig. 1.~a! and ~b! correspond to«
50.25, ~c! and ~d! to «50.70, ~e! and ~f! to «
51, and~g! and ~h! to «510.
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synchronized PT state, and defects no longer appear in
systems. These three states were already reported by
Ref. @12#, wherein we address the reader for all details. If o
further increases the coupling@Figs. 1~g! and 1~h!#, the two
states hold in a completely synchronized configuration,
there is again creation-annihilation of defects in both s
tems. A heuristic explanation for this feature is that the t
dynamics forA1 and A2 are not compatible and the com
bined dynamics of the synchronized state must deal with
incompatibility by having a ‘‘intermittency’’ type dynamic
as it will be illustrated later on.

We now introduce some quantitative indicators for d
scribing the above scenario. In the particular case of
systems, one lying in the AT regime and the other lying
the PT regime, a good indicator for synchronization is
number of defectsNd that are present in each system. Inde
the PT regime contains no defect as long as it is not coup
to the AT regime, conversely the AT regime that conta
defects may eliminate these defects through a coupling w
a PT system. Obviously, this indicator cannot be extende
the study of two systems lying both in AT or PT, because
these cases two dynamical systems with the same numb
defects do not necessarily follow the same dynamics. In
2~a!, a statistics is made ofNd as a function of« during
Dt51000. The condition for defining a defect isur,0.2u.
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The inset reports the situation for small value of the coupl
and corresponds to the first three cases of Fig. 1. The num
of defects ofA1 is decreasing to zero when the coupling« is
increased. For the systemA2, the evolution of the number o
defects with« is not monotonous. It increases to a maximu
value for«.0.12, then the number of defects is equal to t
number of defects forA1 and decreases to reach zero wh
«.0.16. However, by further increasing the coupling, t
number of defects comes out to be again an increasing fu
tion of « ~e.g., for«52, Nd579).

In Fig. 2~b!, we plot two others indicators for the synchro
nization, namely, the average~in space and time! of the
modulus difference~solid line!

^Dr&5 K ur12r2u
r11r2

L
x,t

~2!

and the same average for the phase difference~dashed line!

^Dc&5 K uc12c2u
uc1u1uc2u L

x,t

. ~3!

The inset again reports the situation at small coupl
values. As it can be clearly seen in Fig. 2~b!, the modulus
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FIG. 4. Case:Nc5N/5: Same
indicators of synchronization as in
Fig. 2. ~a! Total number of defects
vs the coupling strength« for A1

~solid line! and A2 ~dashed line!.
The inset reports the zoom a
small « values.~b! The modulus
~solid line! and phase~dashed
line! indicators vs«. The modulus
indicator has been multiplied by a
factor 7 in order to get the sam
vertical scale. The inset report
the zoom at small« values.~c! S
indicator vs «. The inset reports
the zoom at small« values.~d! S
indicator vs time ~in arbitrary
units! for a fixed coupling strength
«55. The inset is a zoom fromt
51100 to t51300. Same param
eters as in the caption of Fig. 3. I
~a, b, c! «(5) means that we take
one controller each five mes
points. Notice that the correspond
ing transitions occur for coupling
strengths five times larger than i
Fig. 2.
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difference decreases much faster than the phase differe
as the coupling increases. This evidence led us to conc
that the defects first synchronize before having a comp
synchronization@12#. At larger coupling values both func
tions decrease but the average phase difference is a
slowly decaying function.

In Figs. 2~c! and 2~d! two different indicators are chosen
namely,

S~ t,«!5^Re~A12A2!1Im~A12A2!&x ~4!

and

S~«!5^S~ t,«!& t . ~5!

These indicators are an hybrid between the phase
modulus difference indicators. In Fig. 2~c!, we reportS(«) as
a function of the coupling strength. This indicator has t
particularity of being not a monotonous function of the co
pling parameter«. In particular, when the number of defec
goes to zero, one can observe a sudden increase in the
responding value of theS indicator. Figure 2~d! reports the
temporal evolution ofS(t,«) at large coupling («52). From
this figure, it becomes evident that the synchronization is
a stable process, and that some kind of intermittency p
nomena take place. The two attractors ofA1 and A2 being
not compatible, the dynamics of the combined system
jumping from one to the other in the course of the time.

The effect of alocalizedsynchronization is illustrated in
Fig. 3, where we represent the space-time plots ofr1 ~a, c, e,
ce,
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g! and r2 ~b, d, f, h! for Nc5N/5. In order to demonstrate
that the coupling in the localized case follows an integ
behavior, we have chosen«50.25 ~a, b!, «50.70 ~c, d!, «
51 ~e, f!, and«510 ~g, h! which are exactly five times the
coupling strengths used in Fig. 1 forNc5N. Making a com-
parison with Fig. 1, it is nearly impossible to distinguis
between the two scenarios of synchronization stages. A
ther confirmation for this integral behavior can be obtain

FIG. 5. «* ~see the text for definition! as a function of the ratio
j/jc . The straight line aligning the results witnesses the existe
of an integral behavior for the localized synchronization in the lim
of at least three controllers per spatial correlation length.
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by reporting the behavior of the above indicators in the c
Nc5N/5 ~Fig. 4!. As it is clear from the figures, the sam
succession of events occurs for localized synchronization
cept that the coupling strength has to be multiplied by
factor Nc /N.

To ensure that our results were not casual and also
show up the limitation of this integral behavior, we ha
performed an ultimate test. We have defined«* as the mini-
mum coupling strength for which the number of defects
A1 andA2 vanishes, and we have evaluated«* at different
values ofj/jc . In all cases the controllers are equally sep
rated in space from each other with a separationj andjc is
the correlation length of the AT system, which is by far t
smaller of the two systems. Furthermore, we have limi
our analysis to the case of at least one controller for spa
correlation length, since, as already discussed above, the
of robustness in the synchronization properties at larger
tios j/jc was already demonstrated by us in Ref.@11#. The
outcome of this test is summarized in Fig. 5, where the in
gral behavior is witnessed by the fact that the results a
quasiperfectly on a straight line for a value ofj/jc,1/3.
When the number of controllers decreases, the integral
ett
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havior no longer holds and the synchronization between
two systems is obtained for the larger value of the coupl
constant«. A similar scenario appears in Ref.@24#.

We do not want to claim that the number 1/3 is univer
but it presumably depends on the characteristic paramete
the two considered systems.

In summary, we have discussed the case of a coup
between two systems with different dynamical propert
with a finite number of controllers. The main conclusion
that synchronization is robust even in this case, and follo
an integral behavior in the limit of at least three controlle
per spatial correlation length.
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