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Integral behavior for localized synchronization in nonidentical extended systems
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We report the synchronization of two nonidentical spatially extended fields, ruled by one-dimensional
complex Ginzburg-Landau equations. The two fields are prepared in different dynamical regimes, and interact
via an imperfect coupling consisting of a given number of local controbgrs The strength of the coupling
is ruled by the parameter. We show that, in the limit of three controllers per correlation length, the synchro-
nization behavior is not affected if the produdt. /N is kept constant, providing a sort of integral behavior for
localized synchronization.

PACS numbgs): 05.45.Xt, 05.45.Jn, 05.45.Pq

Synchronization of concentrated chaotic systems has beesynchronization of space-time chaotic states generated by
a subject of a large body of recent investigations. In particucomplex Ginzburg-Landau equatiof@SGLE) as a result of a
lar, five levels of synchronization have been characterized ispatially distributed coupling. The CGLE is known to model
this framework, namely, complete synchronizati@®) [1], the universal pattern forming features close to the emergence
phase synchronizatio®S [2], lag synchronizatiofiLS) [3], of a Hopf bifurcation 16]. It has been used to describe many
generalized synchronizatidi®S) [4], and almost synchroni- different situations in laser physi¢$7], fluid dynamicd 18],
zation(AS) [5]. CS implies a perfect hooking of the chaotic chemical turbulencgl9], bluff body waked20], etc.
trajectories of two systems, in such a way as they remain in The system under study is
step with each other in the course of the time. PS is a regime
characterized by a quasiperfect locking of the chaotic phases Al’2= At (1+i alvg)af(Alvz— (1+iB12)|AL 4 2A1,2
not associated with any correlation in the chaotic amplitudes
[2]. LS is an intermediate step between PS and CS. In this +e(X)(Az1~ A1), 1)
case, the two signals lock their phases and amplitudes, but
with a finite-time lag[3]. GS implies the hooking of the Where A; (X, t)=ps X, t)exdiys Axt)] are two complex
output of one system to a given function of the output of thefields of amplitudes; , and phases; ,, respectivelygzA, ,
other [4]. Finally, AS consists in a regime where only a stays for the second derivative @f , with respect to the
subset of the variables of one system is completely synchrgspace variable €x<L, L represents the system extension,
nized with the corresponding subset of variables of the othethe dot denotes temporal derivative; ,,5;, are suitable
system[5]. real control parameterg,(x) rules the strength of the sym-
The natural continuation of these pioneering works hagnetric coupling, and the boundary conditions are chosen to
been to investigate synchronization phenomena in spatiallipe periodic. In the present paper we deal with localized cou-
extended systems. A first approach has been to connect a s#ings. We should point out that both in numerical simula-
of concentrated chaotic systems by means of a given couions and in practical implementations, a finite resolution in
pling (local or global between the individuals constituting Space is unavoidable, leading to a coupling that is extended
the set. In this framework, space-time chaos synchronizationver a given spatial domain. Therefore, one can reason-
has been studied for populations of coupled dynamical sysably expect that the effect of the coupling depends strongly
tems|[6], for systems formed by globally coupled Hamil- on the extent ofA. Since we are interested in studying a
tonian or bistable elemen{g], and for neural networkg3]. coupling whose nature is as localized as possible, we have
As for continuous space-time systems, the emergence of sydecided to sefA equal to the mesh size. This, indeed, repre-
chronized states has been investigated for one-dimensionsénts the maximal spatial resolution that one can obtain in
chemical modelqd9], and for two fields obeying identical numerical simulations at a given mesh size. In order to pro-
one-dimensional complex Ginzburg-Landau equatidrs. vide consistent results, we have kept constant the mesh size
At that point, the obvious question was: Is it possible toall throughout the paper. The detailed study on the depen-
realize all different kinds of synchronization features in thedence of the synchronization features on the selected preci-
case of a coupling between nonidentical extended systemsPon is an important point for practical implementations, and
This problem has been only recently addresskd-14. In it will be treated in detail elsewhere.
three previous papefd1,12,15, we have investigated the Let us now recall what has been achieved in the previous
works; in Ref.[11], we have characterized the synchroniza-
tion of two identical CGLE &= a,, B1=/>) as a result of
*Present address: Department of Physics and Center for Interdig coupling in a finite numbeN, of controllers, which were
ciplinary Research on Complex Systems, Northeasterrselected to be equally separated in spage &;_1=¢&). The
University, Boston, MA 02115. main result obtained in Refl1] is that a finite number of
Email address: jbragard@presto.physiscs.neu.edu controllers is sufficient to warrant complete synchronization
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FIG. 1. CaseN.=N: Space(horizonta)-time
(vertical) plots of the modulp; (a, c, e, gandp,
(b, d, f, h) a1=a2=2.l, Bl: - 12, and ,82
=—0.83. Time increases downwards from 500 to
1500 (u.t.). The first 500 time unitgnot plotted
after coupling has been started are not repre-
sented. Note that the two systems were prepared
in two independent chaotic statesT for A; and
PT forA,). (a) and(b) correspond t@ = 0.05,(c)
and(d) to e=0.14,(e) and(f) to £=0.2, and(g)
and(h) to e=2.

of two identical systems. This kind of phenomenon wasmonitored in Ref[15] can accommodate with a global de-
proved to be robust up to the limit in which a controller is crease of the space-time average of the phase differences
placed approximately each two correlation lengthd ( (AW)=(|y;(x,t) — ,(x,t)|) observed in Ref.12]. We will
<2¢.), independently of the mesh size. show that the synchronization at large parameter mismatches
In Ref. [12] we were interested in the synchronization of js deteriorated by a further increase of the coupling between
two space-time chaotic fields coming from different dynam-the two systems. The second crucial question is the follow-
ics (a1# az, B1# ;) in the case in which the coupling ing: having studiedocalized (N.<N) synchronization be-
function was extended on all thé mesh points of the sys- yyeen identical systenfd 1] andextendedN,=N) synchro-
tem. The main results coming out from this analysis iS &,;;4tion between nonidentical systefd,15, is it possible

transition for small parameter mismatches from no synchrog, gyiend our analysis to the case oloaalizedsynchroni-
mzauorr\] to complete synch.ronlzanfon ?S the local COUp“n.gzation between nonidentical systems? Here again, anticipat-
strengt INCreases. At variance, for farge parameter mlslhg the results which will follow, the synchronization sce-
matchege.g., if one system lays in the amplitude turbulence_~.". o . . .
regime and the other lays in the phase turbulence reginee nario is not qualitatively affected in the limjt=< &, provided
was observed. This latter situation was further investigate@umper of controllers decreases, that is the prodbit/N is
by us in Ref[15], where a space-time Fourier analysis indi- KEPt constant. _ _ _
cated that the synchronization phenomenon has rather a tem- Lt us firstillustrate théntegral behavior of the localized
poral behavior than a spatial one and the intermediate stag&/nchronization between two nonequivalent space-time cha-
is the one with larger variations in the mean temporal fre-otic states. In the uncoupled cdggx)=0] different chaotic
guencies of the two systems. regimes can be identified in Eqd) in different regions of
The aim of the present paper is to address two basic quegie parameter spacea(B) [21], depending on the
tions that were left unanswered in our previous work. Thestability properties of the plane-wave solutiond,
first is how the temporal intermittencies in the spatial aver-= J1-g?el@*ted [ —1<q=<1, qbeing the wave number in
age phase differencegAW) (t)={|y1(x,t)— ¥o(x,1)|),  Fourier spacep=—B—(a— B)g?]. In the parameter region
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FIG. 2. CaselN.=N: Indica-
tors of synchronization(a) Total
number of defects vs the coupling
strengthe for A; (solid line) and
A, (dashed ling The inset reports
the zoom at smalk values. (b)
The modulus (solid line and

€ € phaseg(dashed lingindicators vse
(see the text for definition The
a b modulus indicator has been multi-
plied by a factor 7 in order to get
the same vertical scale for the two
1 ' ! ‘ ' indicators. The inset reports the
T ‘ ‘ zoom at smalle values.(c) Sin-
o1 dicator(see the text for definition
06 vse. The inset reports the zoom at
small ¢ values.(d) S indicator vs
» 04 a1} 1 time (in arbitrary unitg for a fixed
| coupling strengtte=1. The inset
02 03 04 05 0.2 Yoo e mo  me ao is a zoom fromt= 600 tot=800.
Parameters of Eq1) are the same
as in the caption of Fig. 1.
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aB>—1, there exists a critical value of the wave numbersense, still we obtain that(x)=0.5 for x~100. In what
q.=V1+aB/2(1+ B%)+1+apB, such that all the plane follows, we switch on the coupling term on a set of equis-
waves in the range-g.<g=gq, are linearly stable. Outside paced controllers, and study the synchronization features
this range, they become unstable through the so-called Eclemerging in the evolution of the two fields, as a function of
haus instability[22]. Sinceq. vanishes as the produet3 the two relevant parameters, which are the coupling coeffi-
approaches—1, all plane waves become unstable whenciente and the controllers numbey. .

crossing from below the so-called Benjamin-Feir lings As a first step, we discuss the results of the synchroniza-
=—1 in the parameter space. Above this line, Rgfl]  tion between the two states with a coupling coefficient that is
identifies three different turbulent regimes, namely, phaséctive for all mesh pointsN.=N). This will serve us as a
turbulence(PT), amplitude turbulenc€AT) or defect turbu- reference for the following localized case. The numerical
lence, and bichaos. In the following we will concentrate onmethod used to integrate Eqél) is a finite difference
PT and AT, since they have received special attention in th&nethod with a semi-implicit scheme for the time discretiza-
scientific community23]. tion. The lateral boundary conditions are chosen to be peri-

PT is characterized by the fact that the chaotic behavior opdic. The spatial extension is=256 and the number of
the field is essentially dominated by the dynamics of themesh points arél=2048. The time step i§;=0.001 and the
phase, whereas the amplitude changes smoothly, and it #&upling is applied at each time step. Initially, the two sys-
always bounded away from zero. On the contrary, in AT thetems A, , are left uncoupled in a Benjamin-Feir unstable
amplitude dynamics becomes dominant over the phase dylane wave solution during a tinte= 1500 in order to wash
namics, leading to large amplitude oscillations that can oceut the initial transient and to be in a chaotic &or A;) and
casionally cause the occurrence of a space-time defect in tHeT state(for A,). After this initial step, the coupling is
point where the amplitude is locally vanishing. switched on.

For what was said above, by choosing in E. a suffi- In Fig. 1 we report the patterns arising from the space-
ciently large parameter mismatch between the equations gotime representations ¢f; (a, c, e, g andp, (b, d, f, h for
erning the fieldsA; ,, one can select the uncoupled evolu-£=0.05(a, b, £=0.14(c, d), e=0.2 (e, ), e=2 (g, h). At
tions of A; andA, to be in AT and PT, respectivelyn what  small coupling strengths, the two systems do not synchro-
follows a;=w@,=2.1, B;=—1.2, andB,=—0.83). The cal- nize, and hold in their respective regimes as it is illustrated in
culated correlation length in the AT cagend for a spatial Figs. 1@ and 1b). At intermediate couplingFigs. 1(c) and
extension_ = 256) isé.=5.38, for the PT system, there is no 1(d)], the two systems enter both in a AT state. Some defects
exponential decay of the spatial correlation function there{p,=0) are created in the systeAy. For even larger cou-
fore the correlation length cannot be defined in the usuapling [Figs. 1e) and Xf)], the two system return both in a
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FIG. 3. Case:N.=N/5: Space(horizonta)-
time (vertica) plots of the modulip; (a, c, e, ¢
andp, (b, d, f, h. a;=a,=2.1, B;=—1.2, and
B>=—0.83. Time increases downwards from 500
to 1500(u.t). Same general stipulations as in the
caption of Fig. 1.(a) and (b) correspond toe
=0.25, (c) and(d) to £=0.70, (e) and (f) to ¢
=1, and(g) and(h) to e=10.

synchronized PT state, and defects no longer appear in boffhe inset reports the situation for small value of the coupling
systems. These three states were already reported by usand corresponds to the first three cases of Fig. 1. The number
Ref.[12], wherein we address the reader for all details. If oneof defects ofA; is decreasing to zero when the couplings
further increases the couplif&igs. 1g) and Xh)], the two increased. For the systefy, the evolution of the number of
states hold in a completely synchronized configuration, butlefects withe is not monotonous. It increases to a maximum
there is again creation-annihilation of defects in both sysvalue fore=0.12, then the number of defects is equal to the
tems. A heuristic explanation for this feature is that the twonumber of defects foA; and decreases to reach zero when
dynamics forA; and A, are not compatible and the com- £=0.16. However, by further increasing the coupling, the
bined dynamics of the synchronized state must deal with thisumber of defects comes out to be again an increasing func-
incompatibility by having a “intermittency” type dynamics tion of ¢ (e.g., fore=2, Ny=79).
as it will be illustrated later on. In Fig. 2(b), we plot two others indicators for the synchro-
We now introduce some quantitative indicators for de-nization, namely, the averagén space and timeof the
scribing the above scenario. In the particular case of twanodulus differencésolid line)
systems, one lying in the AT regime and the other lying in
the PT regime, a good indicator for synchronization is the lp1—pol
number of defectdl, that are present in each system. Indeed, (Ap)= <W>
the PT regime contains no defect as long as it is not coupled LRz
to the AT regime, conversely the AT regime that contains
defects may eliminate these defects through a coupling with
a PT system. Obviously, this indicator cannot be extended in 1~ ]
the study of two systems lying both in AT or PT, because in (Ay)= <#> _ 3)
these cases two dynamical systems with the same number of ||+ 2] %t
defects do not necessarily follow the same dynamics. In Fig.
2(a), a statistics is made dfly as a function ofe during The inset again reports the situation at small coupling
At=1000. The condition for defining a defect is<0.2.  values. As it can be clearly seen in Figh® the modulus

@

nd the same average for the phase differddeshed ling
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FIG. 4. CaseN.=N/5: Same
indicators of synchronization as in
Fig. 2.(a) Total number of defects
vs the coupling strength for A;
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difference decreases much faster than the phase differenag, and p, (b, d, f, b for N.=N/5. In order to demonstrate
as the coupling increases. This evidence led us to concluddat the coupling in the localized case follows an integral
that the defects first synchronize before having a completbehavior, we have chosen=0.25(a, b, e=0.70(c, d), &
synchronization{12]. At larger coupling values both func- =1 (e, f), ande =10 (g, h) which are exactly five times the
tions decrease but the average phase difference is a veepupling strengths used in Fig. 1 fdi.=N. Making a com-
slowly decaying function. parison with Fig. 1, it is nearly impossible to distinguish
In Figs. 2c) and 2d) two different indicators are chosen, between the two scenarios of synchronization stages. A fur-
namely, ther confirmation for this integral behavior can be obtained

S(t,e) =(Re(A;— Ay) +Im(A;— Ay))y (4)

15

and

S(e)=(S(t,e));. (5)
These indicators are an hybrid between the phase and

modulus difference indicators. In Fig(@, we reportS(e) as

a function of the coupling strength. This indicator has the

particularity of being not a monotonous function of the cou-

pling parametek. In particular, when the number of defects

goes to zero, one can observe a sudden increase in the cor-

responding value of th& indicator. Figure &) reports the

temporal evolution o5(t,¢) at large coupling£=2). From

this figure, it becomes evident that the synchronization is not 04

a stable process, and that some kind of intermittency phe- };/E"c

nomena take place. The two attractorsAqf and A, being

not compatible, the dynamics of the combined system is F|G. 5. &* (see the text for definitionas a function of the ratio

jumping from one to the other in the course of the time. ¢/ ¢,. The straight line aligning the results witnesses the existence
The effect of alocalizedsynchronization is illustrated in  of an integral behavior for the localized synchronization in the limit

Fig. 3, where we represent the space-time plots,dfa, c, €, of at least three controllers per spatial correlation length.

8*
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by reporting the behavior of the above indicators in the caséavior no longer holds and the synchronization between the
N.=N/5 (Fig. 4). As it is clear from the figures, the same two systems is obtained for the larger value of the coupling
succession of events occurs for localized synchronization exconstants. A similar scenario appears in R¢R4].

cept that the coupling strength has to be multiplied by the We do not want to claim that the number 1/3 is universal
factor N¢/N. but it presumably depends on the characteristic parameters of

To ensure that our results were not casual and also tghe two considered systems.

show up the Iim_itation of this integral k_)ehavior, we have In summary, we have discussed the case of a coupling
performed an ultimate test. We have definédas the mini-  peryeen two systems with different dynamical properties
mum coupling strength for which the number of defects inith 5 finite number of controllers. The main conclusion is

A; andA, vanishes, and we have evaluated at different 4t synchronization is robust even in this case, and follows
values_ ofélé.. In all cases the controllers are equally S€Pa-4n integral behavior in the limit of at least three controllers
rated in space from each other with a separafiand &, is per spatial correlation length.

the correlation length of the AT system, which is by far the

smaller of the two systems. Furthermore, we have limited We are indebted to H. Mancini, D. Maza, F. T. Arecchi, J.
our analysis to the case of at least one controller for spatiakurths, and A. Pikovsky for many useful discussions. This
correlation length, since, as already discussed above, the lagkork was partly supported by Integrated Action Italy-Spain
of robustness in the synchronization properties at larger raH197-30. S.B. acknowledges financial support from the EU
tios &/ £, was already demonstrated by us in Réfl]. The  through Contract No. ERBFMBICT983466. This text pre-
outcome of this test is summarized in Fig. 5, where the intesents results of the Belgian Program Inter-University Pole of
gral behavior is witnessed by the fact that the results aligiittraction (IUPA 1V-06) initiated by the Belgian State,
quasiperfectly on a straight line for a value &f¢.<1/3.  Prime Minister's Office, Federal Office for Scientific, Tech-
When the number of controllers decreases, the integral betical and Cultural Affairs.
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