7,932 research outputs found

    Emergence of Kinetic Behavior in Streaming Ultracold Neutral Plasmas

    Get PDF
    We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data is compared with results from a one-dimensional, two-fluid numerical simulation.Comment: 8 pages, 6 figure

    UK and EU policy for approval of pesticides suitable for organic systems: Implications for Wales

    Get PDF
    This study was commissioned by the Welsh Assembly Government (WAG) to review the pesticide approval system in the UK and Europe as far as it affects the use of substances and techniques for crop protection by organic producers in Wales. WAG considers it important that the UK pesticide approval system does not present unnecessary barriers to the development of organic production in Wales. Key Recommendations and scope for further work · WAG should work with the Pesticides Safety Directorate to ensure that the development of pesticide regulatory policy at both National and European level takes full account of the needs of both conventional and organic agriculture and horticulture in the UK. · There is scope for WAG to support the development of a National Pesticide Policy so that regulatory and commercial barriers impeding the development of organic pesticides are minimised. Not only could greater availability of ‘organic pesticides’ have a significant impact on organic production in Wales but there could be important implications for conventional horticulture systems and the use of alternatives to conventional pesticides. · One important regulatory barrier to the registration of ‘organic pesticides’ is the MRL requirement(s) for their approval and this needs to be resolved. Suitable analytical techniques are required to determine firstly whether these substances result in residues, and secondly to identify the breakdown and residue pathways. So far, this issue has not received the attention of any EU Member State. · According to the proposed framework for the 4th Stage Review of EU Pesticides Directive 91/414, notifiers are required to produce a dossier, at their own expense, covering characterisation, human toxicity, ecotoxicity efficacy and other relevant data. The Review includes specific provision for companies notifying the same substance to submit a shared dossier. This will help those businesses (many of which are relatively small companies) to save on the high cost of producing the dossiers. It will also aid the Commission since it will reduce the number of dossiers that have to be considered, and ensure that all the available data is included. WAG should encourage and support the production of collective dossiers; although as yet there is no indication of how this will be done in practice, and further details from the Commission are awaited. · This study has concluded that access to a wider range of ‘organically acceptable pesticides’ would not have a dramatic impact on organic production in Wales. However, in developing an integrated organic policy, WAG should continue to address the pesticides issue. Some of the methods of pest & disease control in organic systems are either physical or multi-cellular e.g. micro-organisms used as biocontrol agents. WAG agri environment policy may provide a vehicle to promote these techniques much more actively. Further, it is important to recognise that while Wales alone is too small to have a major impact on commercial and regulatory pressures, WAG can have an impact by working pro-actively with others to make progress. · There are no published EU or national Member State criteria that can be used to evaluate the acceptability of pesticide substances for organic production. Identifying such criteria and promoting their acceptance at EU level and nationally would allow more active substances to be made available. WAG should work with PSD and others to identify appropriate criteria. · The specific provisions of Article 7 in Annex 2(b) of the Organic Regulation (2092/91) place potential barriers to the adoption of organically acceptable substances for crop protection. There are a number of potentially useful substances currently not included in the Organic Regulation e.g. potassium bicarbonate. WAG should work with PSD and others to identify such substances and support the production of appropriate dossiers. WAG could also encourage further dialogue between the organic sector and Defra to identify amendments in the Organic Regulations to facilitate the inclusion of new pesticides. · Organic pest and disease management is not just a question of inputs but it also relies crucially on advice and extension through initiatives such as Farming Connect and the work of Organic Centre Wales. Long-term commitment to supporting on going advice and extension activities is vital to promote and disseminate best practice in Welsh agriculture and horticulture. · Organic horticulture, vegetable and fruit production systems are particularly sensitive to pest and disease management. Successful control of pests, diseases (and weeds) in these sectors can be critical to the business, and is not assured even when all husbandry and management methods have been effectively applied. Consequently, the use of organically acceptable crop protection methods resulting from future developments (e.g. biopesticides, biological control agents) could have an important role in pest and disease management in these sectors. Both organic and conventional producers in Wales could benefit from having these options available to them and WAG could encourage the adoption of these approaches through appropriate Technology Transfer activities. · The way in which such substances will be regulated at a European level in future is evolving as the review of the Pesticide Directive 91/414 EEC enters the 4th Stage. This stage of the review includes (amongst others) those substances permitted for use in organic production. The guidance documents for the evaluation of applications on plant protection products made from plants or plant extracts and from chemical substances are currently at the draft stage. The response of the Pesticide Safety Directorate and Defra to these developments is not yet clear but this provides an excellent opportunity for WAG to have an input at an early stage in the review process

    Using molecular mechanics to predict bulk material properties of fibronectin fibers

    Get PDF
    The structural proteins of the extracellular matrix (ECM) form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn) and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional network models

    Rethink fuel poverty as a complex problem

    Get PDF

    Design of a low-noise aeroacoustic wind tunnel facility at Brunel University

    Get PDF
    This paper represents the design principle of a quiet, low turbulence and moderately high speed aeroacoustic wind tunnel which was recently commissioned at Brunel University. A new hemi-anechoic chamber was purposely built to facilitate aeroacoustic measurements. The wind tunnel can achieve a maximum speed of about 80 ms-1. The turbulence intensity of the free jet in the potential core is between 0.1–0.2%. The noise characteristic of the aeroacoustic wind tunnel was validated by three case studies. All of which can demonstrate a very low background noise produced by the bare jet in comparison to the noise radiated from the cylinder rod/flat plate/airfoil in the air stream.The constructions of the aeroacoustic wind tunnel and the hemi-anechoic chamber are financially supported by the School of Engineering and Design at Brunel University

    LSST optical beam simulator

    Full text link
    We describe a camera beam simulator for the LSST which is capable of illuminating a 60mm field at f/1.2 with realistic astronomical scenes, enabling studies of CCD astrometric and photometric performance. The goal is to fully simulate LSST observing, in order to characterize charge transport and other features in the thick fully depleted CCDs and to probe low level systematics under realistic conditions. The automated system simulates the centrally obscured LSST beam and sky scenes, including the spectral shape of the night sky. The doubly telecentric design uses a nearly unit magnification design consisting of a spherical mirror, three BK7 lenses, and one beam-splitter window. To achieve the relatively large field the beam-splitter window is used twice. The motivation for this LSST beam test facility was driven by the need to fully characterize a new generation of thick fully-depleted CCDs, and assess their suitability for the broad range of science which is planned for LSST. Due to the fast beam illumination and the thick silicon design [each pixel is 10 microns wide and over 100 microns deep] at long wavelengths there can be effects of photon transport and charge transport in the high purity silicon. The focal surface covers a field more than sufficient for a 40x40 mm LSST CCD. Delivered optical quality meets design goals, with 50% energy within a 5 micron circle. The tests of CCD performance are briefly described.Comment: 9 pages, 9 figure

    Laser-controlled fluorescence in two-level systems

    Get PDF
    The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society
    corecore