954 research outputs found

    Segregation during directional melting and its implications on seeded crystal growth: A theoretical analysis

    Get PDF
    Directional melting of binary systems, as encountered during seeding in melt growth, is analyzed for concurrent compositional changes at the crystal-melt interface. It is shown that steady state conditions cannot normally be reached during seeding and that the growth interface temperature at the initial stages of seeded growth is a function of backmelt conditions. The theoretical treatment is numerically applied to Hg1-xCdXTe and Ga-doped Ge

    Conserved Aspartate Residues and Phosphorylation in Signal Transduction by the Chemotaxis Protein CheY

    Get PDF
    The CheY protein is phosphorylated by CheA and dephosphorylated by CheZ as part of the chemotactic signal transduction pathway in Escherichia coli. Phosphorylation of CheY has been proposed to occur on an aspartate residue. Each of the eight aspartate residues of CheY was replaced by using site-directed mutagenesis. Substitutions at Asp-12, Asp-13, or Asp-57 resulted in loss of chemotaxis. Most of the mutant CheY proteins were still phosphorylated by CheA but exhibited modified biochemical properties, including reduced ability to accept phosphate from CheA, altered phosphate group stability, and/or resistance to CheZ-mediated dephosphorylation. The properties of CheY proteins bearing a substitution at position 57 were most aberrant, consistent with the hypothesis that Asp-57 is the normal site of acyl phosphate formation. Evidence for an alternate site of phosphorylation in the Asp-57 mutants is presented. Phosphorylated CheY is believed to cause tumbling behavior. However, a dominant mutant CheY protein that was not phosphorylated in vitro caused tumbling in vivo in the absence of CheA. This phenotype suggests that the role of phosphorylation in the wild-type CheY protein is to stabilize a transient conformational change that can generate tumbling behavior

    Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    Full text link
    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in Rb1βˆ’Ξ΄_{1-\delta}Fey_ySe2βˆ’z_{2-z}Sz_z. We find: i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (yβ‰ˆ1.5y\approx1.5), the block AF phase with 5Γ—5\sqrt{5}\times \sqrt{5} iron vacancy order (yβ‰ˆ1.6y\approx1.6), and the iron vacancy-free phase (yβ‰ˆ2y\approx2); ii) the superconducting phase (z=0z=0) evolves into a metallic phase (z>1.5z>1.5) with sulfur substitution due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. Our data suggest that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is the key to understanding the relationship between these complicated phases.Comment: 7 pages, 6 figure

    Neutron-Diffraction Measurements of an Antiferromagnetic Semiconducting Phase in the Vicinity of the High-Temperature Superconducting State of Kx_xFe2βˆ’y_{2-y}Se2_2

    Full text link
    The recently discovered K-Fe-Se high temperature superconductor has caused heated debate regarding the nature of its parent compound. Transport, angle-resolved photoemission spectroscopy, and STM measurements have suggested that its parent compound could be insulating, semiconducting or even metallic [M. H. Fang, H.-D. Wang, C.-H. Dong, Z.-J. Li, C.-M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. 94, 27009 (2011); F. Chen et al. Phys. Rev. X 1, 021020 (2011); and W. Li et al.,Phys. Rev. Lett. 109, 057003 (2012)]. Because the magnetic ground states associated with these different phases have not yet been identified and the relationship between magnetism and superconductivity is not fully understood, the real parent compound of this system remains elusive. Here, we report neutron-diffraction experiments that reveal a semiconducting antiferromagnetic (AFM) phase with rhombus iron vacancy order. The magnetic order of the semiconducting phase is the same as the stripe AFM order of the iron pnictide parent compounds. Moreover, while the root5*root5 block AFM phase coexists with superconductivity, the stripe AFM order is suppressed by it. This leads us to conjecture that the new semiconducting magnetic ordered phase is the true parent phase of this superconductor.Comment: 1 table, 4 figures,5 page

    The influence of magnetic order on the magnetoresistance anisotropy of Fe1+Ξ΄βˆ’x_{1+\delta-x}Cux_{x}Te

    Full text link
    We performed resistance measurements on Fe1+Ξ΄βˆ’x_{1+\delta-x}Cux_{x}Te with xEDX≀0.06x_{EDX}\leq 0.06 in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For xEDX=0.06x_{EDX} = 0.06 the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.Comment: 11 pages, 9 figure

    Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering

    Get PDF
    CheY, the 14-kDa response regulator protein of the Escherichia coli chemotaxis pathway, is activated by phosphorylation of Asp57. In order to probe the structural changes associated with activation, an approach which combines 19F NMR, protein engineering, and the known crystal structure of one conformer has been utilized. This first of two papers examines the effects of Mg(II) binding and phosphorylation on the conformation of CheY. The molecule was selectively labeled at its six phenylalanine positions by incorporation of 4-fluorophenylalanine, which yielded no significant effect on activity. One of these 19F probe positions monitored the vicinity of Lys109, which forms a salt bridge to Asp57 in the apoprotein and has been proposed to act as a structural "switch" in activation. 19F NMR chemical shift studies of the labeled protein revealed that the binding of the cofactor Mg(II) triggered local structural changes in the activation site, but did not perturb the probe of the Lys109 region. The structural changes associated with phosphorylation were then examined, utilizing acetyl phosphate to chemically generate phsopho-CheY during NMR acquisition. Phosphorylation triggered a long-range conformational change extending from the activation site to a cluster of 4 phenylalanine residues at the other end of the molecule. However, phosphorylation did not perturb the probe of Lys109. The observed phosphorylated conformer is proposed to be the first step in the activation of CheY; later steps appear to perturb Lys109, as evidenced in the following paper. Together these results may give insight into the activation of other prokaryotic response regulators

    Two spatially separated phases in semiconducting Rb0.8_{0.8}Fe1.5_{1.5}S2_2

    Full text link
    We report neutron scattering and transport measurements on semiconducting Rb0.8_{0.8}Fe1.5_{1.5}S2_2, a compound isostructural and isoelectronic to the well-studied A0.8A_{0.8}Fey_{y}Se2(A=_2 (A= K, Rb, Cs, Tl/K) superconducting systems. Both resistivity and DC susceptibility measurements reveal a magnetic phase transition at T=275T=275 K. Neutron diffraction studies show that the 275 K transition originates from a phase with rhombic iron vacancy order which exhibits an in-plane stripe antiferromagnetic ordering below 275 K. In addition, interdigitated mesoscopically with the rhombic phase is an ubiquitous phase with 5Γ—5\sqrt{5}\times\sqrt{5} iron vacancy order. This phase has a magnetic transition at TN=425T_N=425 K and an iron vacancy order-disorder transition at TS=600T_{S}=600 K. These two different structural phases are closely similar to those observed in the isomorphous Se materials. Based on the close similarities of the in-plane antiferromagnetic structures, moments sizes, and ordering temperatures in semiconducting Rb0.8_{0.8}Fe1.5_{1.5}S2_2 and K0.81_{0.81}Fe1.58_{1.58}Se2_2, we argue that the in-plane antiferromagnetic order arises from strong coupling between local moments. Superconductivity, previously observed in the A0.8A_{0.8}Fey_{y}Se2βˆ’z_{2-z}Sz_z system, is absent in Rb0.8_{0.8}Fe1.5_{1.5}S2_2, which has a semiconducting ground state. The implied relationship between stripe/block antiferromagnetism and superconductivity in these materials as well as a strategy for further investigation is discussed in this paper.Comment: 7 pages, 5 figure
    • …
    corecore