754 research outputs found

    Universal fluctuations in heavy-ion collisions in the Fermi energy domain

    Full text link
    We discuss the scaling laws of both the charged fragments multiplicity fluctuations and the charge of the largest fragment fluctuations for Xe+Sn collisions in the range of bombarding energies between 25 MeV/A and 50 MeV/A. We show close to E_{lab}=32 MeV/A the transition in the fluctuation regime of the charge of the largest fragment which is compatible with the transition from the ordered to disordered phase of excited nuclear matter. The size (charge) of the largest fragment is closely related to the order parameter characterizing this process.Comment: 4 pages, 3 figure

    Scanning the critical fluctuations -- application to the phenomenology of the two-dimensional XY-model --

    Full text link
    We show how applying field conjugated to the order parameter, may act as a very precise probe to explore the probability distribution function of the order parameter. Using this `magnetic-field scanning' on large-scale numerical simulations of the critical 2D XY-model, we are able to discard the conjectured double-exponential form of the large-magnetization asymptote.Comment: 4 pages, 4 figure

    From colloidal dispersions to colloidal pastesthrough solid–liquid separation processes

    Get PDF
    Solid–liquid separation is an operation that starts with a dispersion of solid particles in a liquid and removes some of the liquid from the particles, producing a concentrated solid paste and a clean liquid phase. It is similar to thermodynamic processes where pressure is applied to a system in order to reduce its volume. In dispersions, the resistance to this osmotic compression depends on interactions between the dispersed particles. The first part of this work deals with dispersions of repelling particles, which are either silica nanoparticles or synthetic clay platelets, dispersed in aqueous solutions. In these conditions, each particle is surrounded by an ionic layer, which repels other ionic layers. This results in a structure with strong short-range order. At high particle volume fractions, the overlap of ionic layers generates large osmotic pressures; these pressures may be calculated, through the cell model, as the cost of reducing the volume of each cell. The variation of osmotic pressure with volume fraction is the equation of state of the dispersion. The second part of this work deals with dispersions of aggregated particles, which are silica nanoparticles, dispersed in water and flocculated by multivalent cations. This produces large bushy aggregates, with fractal structures that are maintained through interparticle surface– surface bonds. As the paste is submitted to osmotic pressures, small relative displacements of the aggregated particles lead to structural collapse. The final structure is made of a dense skeleton immersed in a nearly homogeneous matrix of aggregated particles. The variation of osmotic resistance with volume fraction is the compression law of the paste; it may be calculated through a numerical model that takes into account the noncentral interparticle forces. According to this model, the response of aggregated pastes to applied stress may be controlled through the manipulation of interparticle adhesion

    Tratamiento del resfriado común y de sus complicaciones rinosinusales

    Get PDF

    Power-law tails from multiplicative noise

    Full text link
    We show that the well-known Langevin equation, modeling the Brownian motion and leading to a Gaussian stationary distribution of the corresponding Fokker-Planck equation, is changed by the smallest multiplicative noise. This leads to a power-law tail of the distribution at large enough momenta. At finite ratio of the correlation strength for the multiplicative and additive noise the stationary energy distribution becomes exactly the Tsallis distribution.Comment: 4 pages, LaTeX, revtex4 style, 2 figure

    Pseudo-critical clusterization in nuclear multifragmentation

    Get PDF
    In this contribution we show that the biggest fragment charge distribution in central collisions of Xe+Sn leading to multifragmentation is an admixture of two asymptotic distributions observed for the lowest and highest bombarding energies. The evolution of the relative weights of the two components with bombarding energy is shown to be analogous to that observed as a function of time for the largest cluster produced in irreversible aggregation for a finite system. We infer that the size distribution of the largest fragment in nuclear multifragmentation is also characteristic of the time scale of the process, which is largely determined by the onset of radial expansion in this energy range.Comment: 4 pages, 3 figures, Contribution to conference proceedings of the 25th International Nuclear Physics Conference (INPC 2013

    Universal features of the order-parameter fluctuations : reversible and irreversible aggregation

    Full text link
    We discuss the universal scaling laws of order parameter fluctuations in any system in which the second-order critical behaviour can be identified. These scaling laws can be derived rigorously for equilibrium systems when combined with the finite-size scaling analysis. The relation between order parameter, criticality and scaling law of fluctuations has been established and the connexion between the scaling function and the critical exponents has been found. We give examples in out-of-equilibrium aggregation models such as the Smoluchowski kinetic equations, or of at-equilibrium Ising and percolation models.Comment: 19 pages, 10 figure

    Nuclear Multifragmentation in the Non-extensive Statistics - Canonical Formulation

    Get PDF
    We apply the canonical quantum statistical model of nuclear multifragmentation generalized in the framework of recently proposed Tsallis non-extensive thermostatistics for the description of nuclear multifragmentation process. The test calculation in the system with A=197 nucleons show strong modification of the 'critical' behaviour associated with the nuclear liquid-gas phase transition for small deviations from the conventional Boltzmann-Gibbs statistical mechanics.Comment: 4 pages, 4 figure

    Influence of surfactants on the structure of titanium oxide gels : experiments and simulations

    Full text link
    We report here on experimental and numerical studies of the influence of surfactants on mineral gel synthesis. The modification of the gel structure when the ratios water-precursor and water-surfactant vary is brought to the fore by fractal dimension measures. A property of {\em polydispersity of the initial hydrolysis} is proposed to explain these results, and is successfuly tested through numerical experiments of three dimensional chemically limited aggregation.Comment: 12 pages, 4 Postscript figures, uses RevTe

    Large-Scale Numerical Evidence for Bose Condensation in the S=1 Antiferromagnetic Chain in a Strong Field

    Full text link
    Using the recently proposed density matrix renormalization group technique we show that the magnons in the S=1 antiferromagnetic Heisenberg chain effectively behaves as bosons that condense at a critical field h_c.Comment: 12 pages, REVTEX 3.0, 3 postscript figures appended, UBCTP-93-00
    corecore