592 research outputs found

    Vitamin, mineral and iron supplementation in pregnancy: cross-sectional study

    Get PDF
    Aim. To assess the use of vitamin, mineral and iron supplements during pregnancy in Zagreb and Novi Sad. Methods. The study was conducted by use of a structured standardized questionnaire consisting of two parts, i. e. data obtained by maternal interview and hospital records. It is designed as a cross-sectional study in two countries (Croatia and Serbia). The study included 893 pregnant women from Zagreb and 6099 pregnant women from Novi Sad. Results. In Zagreb, pregnant women reported highest utilization of vitamin-mineral supplements (n = 508; 56.9 %), whereas in Novi Sad these supplements ranked third (n = 408; 20.3 %), following tocolytics and iron supplements. There was no statistically significant difference in the prevalence of congenital malformations between neonates at in utero exposure to vitamins, minerals and iron supplements and those without such exposure in either Zagreb or Novi Sad arm, with the exception of iron and calcium supplementation in the Zagreb arm. Conclusions. In spite of certain study limitations, the results obtained pointed to the unreasonable and potentially harmful use of these supplements in pregnant women from Zagreb

    Profiling of pluripotency factors in individual stem cells and early embryos [preprint]

    Get PDF
    Major cell fate decisions are governed by sequence-specific transcription factors (TFs) that act in small cell populations within developing embryos. To understand how TFs regulate cell fate it is important to identify their genomic binding sites in these populations. However, current methods cannot profile TFs genome-wide at or near the single cell level. Here we adapt the CUT&RUN method to profile chromatin proteins in low cell numbers, mapping TF-DNA interactions in single cells and individual pre-implantation embryos for the first time. Using this method, we demonstrate that the pluripotency TF NANOG is significantly more dependent on the SWI/SNF family ATPase BRG1 for association with its genomic targets in vivo than in cultured cells, a finding that could not have been made using traditional approaches. Ultra-low input CUT&RUN (uliCUT&RUN) enables interrogation of TF binding from low cell numbers, with broad applicability to rare cell populations of importance in development or disease

    Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation

    Get PDF
    Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic) or uncued (idiothetic) recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze), and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease

    RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays

    Get PDF
    RNA splicing is an essential step in producing mature messenger RNA (mRNA) and other RNA species. Harnessing RNA splicing modifiers as a new pharmacological modality is promising for the treatment of diseases caused by aberrant splicing. This drug modality can be used for infectious diseases by disrupting the splicing of essential pathogenic genes. Several antisense oligonucleotide splicing modifiers were approved by the U.S. Food and Drug Administration (FDA) for the treatment of spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD). Recently, a small-molecule splicing modifier, risdiplam, was also approved for the treatment of SMA, highlighting small molecules as important warheads in the arsenal for regulating RNA splicing. The cellular targets of these approved drugs are all mRNA precursors (pre-mRNAs) in human cells. The development of novel RNA-targeting splicing modifiers can not only expand the scope of drug targets to include many previously considered “undruggable” genes but also enrich the chemical-genetic toolbox for basic biomedical research. In this review, we summarized known splicing modifiers, screening methods for novel splicing modifiers, and the chemical space occupied by the small-molecule splicing modifiers

    The role of p75NTR in cholinergic basal forebrain structure and function

    Get PDF
    The role of the p75 neurotrophin receptor (p75NTR) in adult cholinergic basal forebrain (cBF) neurons is unclear due to conflicting results from previous studies and to limitations of existing p75NTR-knock-out mouse models. In the present study we used a novel conditional knock-out line (ChAT-cre p75in/in) to assess the role of p75NTR in the cBF by eliminating p75NTR in choline acetyl-transferase-expressing cells. We show that the absence of p75NTR results in a lasting increase in cBF cell number, cell size, and cholinergic innervation to the cortex. Analysis of adult ChAT-cre p75in/in mice revealed that mutant animals show a similar loss of cBF neurons with age to that observed in wild-type animals, indicating that p75NTR does not play a significant role in mediating this age-related decline in cBF neuronal number. However, the increased cholinergic axonal innervation of the cortex, but not the hippocampus, corresponded to alterations in idiothetic but not allothetic navigation. These findings support a role for p75NTR-mediated regulation of cholinergic-dependent cognitive function, and suggest that the variability in previous reports of cBF neuron number may stem from limited spatial and temporal control of p75NTR expression in existing knock-out models

    Model for eukaryotic tail-anchored protein binding based on the structure of Get3

    Get PDF
    The Get3 ATPase directs the delivery of tail-anchored (TA) proteins to the endoplasmic reticulum (ER). TA-proteins are characterized by having a single transmembrane helix (TM) at their extreme C terminus and include many essential proteins, such as SNAREs, apoptosis factors, and protein translocation components. These proteins cannot follow the SRP-dependent co-translational pathway that typifies most integral membrane proteins; instead, post-translationally, these proteins are recognized and bound by Get3 then delivered to the ER in the ATP dependent Get pathway. To elucidate a molecular mechanism for TA protein binding by Get3 we have determined three crystal structures in apo and ADP forms from Saccharomyces cerevisae (ScGet3-apo) and Aspergillus fumigatus (AfGet3-apo and AfGet3-ADP). Using structural information, we generated mutants to confirm important interfaces and essential residues. These results point to a model of how Get3 couples ATP hydrolysis to the binding and release of TA-proteins

    Agricultural Academy

    Get PDF
    Abstract ZECEVIC, V., J. BOSKOVIC, M. DIMITRIJEVIC and S. PETROVIC, 2010. Genetic and phenotypic variability of yield components in wheat (Triticum aestivum L.). Bulg. J. Agric. Sci., Variability, heritability and components of variance for number of grains per spike and grain weight per spike have been studied in 10 winter wheat varieties from different selection centers (Arsenal, KG-56, Gruza, Mironovskaya 808, Norin 10, Rana Niska, Spartanka, Sterna, Osjecanka, and Szegedi 765). The experiment was performed in randomized block design in three replications on the experimental field of Small Grains Research Centre, Kragujevac in three years. Average estimated values for number of grains per spike and grain weight per spike differed significantly among years and among varieties. The highest average value for number of grains per spike had Szegedi 765 variety ( x = 75.1) and the lowest value was found in Spartanka ( x = 56.0). During investigated period the highest average value for grain weight per spike was determined in Gruza ( x = 2.9 g), and the lowest value in Norin 10 ( x = 2.0 g). The average variation coefficient for number of grains per spike was 17.4%, and for grain weight per spike was 21.4%. The lowest variability for number of grains per spike and grain weight per spike was established in Sterna variety (V = 13.0%; 16.2%, respectively) and the highest in Norin 10 variety (V = 21.6%; 25.1%, respectively). Obtained heritability value in broad sense for number of grains per spike was about 60%, and for grain weight per spike about 40%. Statistical analysis of variance established highly significant differences in mean values for number of grains per spike and grain weight per spike. Phenotypic analysis of variance indicated that ecological factors had higher impact on the expression of number of grains per spike and grain weight per spike than genetic factors
    corecore