447 research outputs found

    Energetics of the primary electron transfer reaction revealed by ultrafast spectroscopy on modified bacterial reaction centers

    Get PDF
    The modification of reaction centers from Rhodobacter sphaeroides by the introduction of pheophytins instead of bacteriopheophytins leads to interesting changes in the primary photosynthetic reaction: long-living populations of the excited electronic state of the special pair P* and the bacteriochlorophyll anion B−A show up. The data allow the determination of the energetics in the reaction center. The free energy of the first intermediate P+B−A, where the electron has reached the accessory bacteriochlorophyll BA lies ≈ 450 cm−1 below the initially excited special pair P*

    Cooperative Dynamics in Unentangled Polymer Fluids

    Full text link
    We present a Generalized Langevin Equation for the dynamics of interacting semiflexible polymer chains, undergoing slow cooperative dynamics. The calculated Gaussian intermolecular center-of-mass and monomer potentials, wich enter the GLE, are in quantitative agreement with computer simulation data. The experimentally observed, short-time subdiffusive regime of the polymer mean-square displacements, emerges here from the competition between the intramolecular and the intermolecular mean-force potentials.Comment: 9 pages, latex, 3 figure

    Loschmidt echo and stochastic-like quantum dynamics of nano-particles

    Full text link
    We investigate time evolution of prepared vibrational state (system) coupled to a reservoir with dense spectrum of its vibrational states. We assume that the reservoir has an equidistant spectrum, and the system - reservoir coupling matrix elements are independent of the reservoir states. The analytical solution manifests three regimes of the evolution for the system: (I) weakly damped oscillations; (II) multicomponent Loschmidt echo in recurrence cycles; (III) overlapping recurrence cycles. We find the characteristic critical values of the system - reservoir coupling constant for the transitions between these regimes. Stochastic dynamics occurs in the regime (III) due to inevoidably in any real system coarse graining of time or energy measurements, or initial condition uncertainty. Even though a specific toy model is investigated here, when properly interpreted it yields quite reasonable description for a variety of physically relevant phenomena.Comment: 8 pages, 3 figure

    Fluctuations from dissipation in a hot non-Abelian plasma

    Get PDF
    We consider a transport equation of the Boltzmann-Langevin type for non-Abelian plasmas close to equilibrium to derive the spectral functions of the underlying microscopic fluctuations from the entropy. The correlator of the stochastic source is obtained from the dissipative processes in the plasma. This approach, based on classical transport theory, exploits the well-known link between a linearized collision integral, the entropy and the spectral functions. Applied to the ultra-soft modes of a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions agree with earlier findings obtained from the microscopic theory. As a by-product, it follows that B\"odeker's effective theory is consistent with the fluctuation-dissipation theorem.Comment: 9 pages, revtex, no figures, identical to published versio

    Rate-equation calculations of the current flow through two-site molecular device and DNA-based junction

    Full text link
    Here we present the calculations of incoherent current flowing through the two-site molecular device as well as the DNA-based junction within the rate-equation approach. Few interesting phenomena are discussed in detail. Structural asymmetry of two-site molecule results in rectification effect, which can be neutralized by asymmetric voltage drop at the molecule-metal contacts due to coupling asymmetry. The results received for poly(dG)-poly(dC) DNA molecule reveal the coupling- and temperature-independent saturation effect of the current at high voltages, where for short chains we establish the inverse square distance dependence. Besides, we document the shift of the conductance peak in the direction to higher voltages due to the temperature decrease.Comment: 12 pages, 6 figure

    Vibrational Enhancement of the Effective Donor - Acceptor Coupling

    Full text link
    The paper deals with a simple three sites model for charge transfer phenomena in an one-dimensional donor (D) - bridge (B) - acceptor (A) system coupled with vibrational dynamics of the B site. It is found that in a certain range of parameters the vibrational coupling leads to an enhancement of the effective donor - acceptor electronic coupling as a result of the formation of the polaron on the B site. This enhancement of the charge transfer efficiency is maximum at the resonance, where the effective energy of the fluctuating B site coincides with the donor (acceptor) energy.Comment: 5 pages, 3 figure

    Fragment size correlations in finite systems - application to nuclear multifragmentation

    Full text link
    We present a new method for the calculation of fragment size correlations in a discrete finite system in which correlations explicitly due to the finite extent of the system are suppressed. To this end, we introduce a combinatorial model, which describes the fragmentation of a finite system as a sequence of independent random emissions of fragments. The sequence is accepted when the sum of the sizes is equal to the total size. The parameters of the model, which may be used to calculate all partition probabilities, are the intrinsic probabilities associated with the fragments. Any fragment size correlation function can be built by calculating the ratio between the partition probabilities in the data sample (resulting from an experiment or from a Monte Carlo simulation) and the 'independent emission' model partition probabilities. This technique is applied to charge correlations introduced by Moretto and collaborators. It is shown that the percolation and the nuclear statistical multifragmentaion model ({\sc smm}) are almost independent emission models whereas the nuclear spinodal decomposition model ({\sc bob}) shows strong correlations corresponding to the break-up of the hot dilute nucleus into nearly equal size fragments

    Fermi's golden rule and exponential decay as a RG fixed point

    Full text link
    We discuss the decay of unstable states into a quasicontinuum using models of the effective Hamiltonian type. The goal is to show that exponential decay and the golden rule are exact in a suitable scaling limit, and that there is an associated renormalization group (RG) with these properties as a fixed point. The method is inspired by a limit theorem for infinitely divisible distributions in probability theory, where there is a RG with a Cauchy distribution, i.e. a Lorentz line shape, as a fixed point. Our method of solving for the spectrum is well known; it does not involve a perturbation expansion in the interaction, and needs no assumption of a weak interaction. We use random matrices for the interaction, and show that the ensemble fluctuations vanish in the scaling limit. Thus the limit is the same for every model in the ensemble with probability one.Comment: 20 pages, 1 figur

    Ab-initio study of model guanine assemblies: The role of pi-pi coupling and band transport

    Full text link
    Several assemblies of guanine molecules are investigated by means of first-principle calculations. Such structures include stacked and hydrogen-bonded dimers, as well as vertical columns and planar ribbons, respectively, obtained by periodically replicating the dimers. Our results are in good agreement with experimental data for isolated molecules, isolated dimers, and periodic ribbons. For stacked dimers and columns, the stability is affected by the relative charge distribution of the pi orbitals in adjacent guanine molecules. pi-pi coupling in some stacked columns induces dispersive energy bands, while no dispersion is identified in the planar ribbons along the connections of hydrogen bonds. The implications for different materials comprised of guanine aggregates are discussed. The bandstructure of dispersive configurations may justify a contribution of band transport (Bloch type) in the conduction mechanism of deoxyguanosine fibres, while in DNA-like configurations band transport should be negligible.Comment: 21 pages, 6 figures, 3 tables, to be published in Phys. Rev.
    • 

    corecore