297 research outputs found

    Eerste imkermarkt georganiseerd door Asten, Someren en Deurne een succes

    Get PDF

    The Doctor in Literature. Volume 4. Gender and Sex

    Get PDF
    This book is the fourth of four volumes in the series The Doctor in Literature. Like the first three it is intended to serve as an indexed, annotated anthology and to bring together a total of some 1500 extracts from approximately 600 works of fiction where medical doctors appear as major or minor characters. The citations in volume 4 relate to sex and gender as these issues affect physicians and medical practice, There is a lengthy chapter discussing fictional female doctors and the perceived differences between these women and their male colleagues. Nurses (generally female) and their interactions with doctors (generally male) are discussed in three chapters. Sexual encounters between patients and doctors form the subject of the last chapter

    Типові схеми використання офшорних та оншорних зон для зменшення податкового навантаження бізнесу в Україні

    Get PDF
    The proteasome is able to create spliced Ags, in which two distant parts of a protein are excised and ligated together to form a novel peptide, for presentation by MHC class I molecules. These noncontiguous epitopes are generated via a transpeptidation reaction catalyzed by the proteasomal active sites. Transpeptidation reactions in the proteasome follow explicit rules and occur particularly efficiently when the C-terminal ligation partner contains a lysine or arginine residue at the site of ligation. Lysine contains two amino groups that theoretically may both participate in ligation reactions, implying that potentially not only peptide but also isopeptide linkages could be formed. Using nuclear magnetic resonance spectroscopy, we demonstrate in the present study that the proteasome can use the ε-amino group of an N-terminal lysine residue in transpeptidation reactions to create a novel type of posttranslationally modified epitopes. We show that the overall efficiency of ε ligation is only 10-fold lower as compared with α ligation, suggesting that the proteasome can produce sufficient isopeptide Ag to evoke a T cell response. Additionally, we show that isopeptides are more stable toward further proteasomal processing than are normal peptides, and we demonstrate that isopeptides can bind to HLA-A2.1 and HLA-A3 with high affinity. These properties likely increase the fraction of ε-ligated peptides presented on the cell surface for CD8+ T cell surveillance. Finally, we show that isopeptide Ags are immunogenic in vivo. We postulate that ε ligation is a genuine posttranslational modification, suggesting that the proteasome can create a novel type of Ag that is likely to play a role in immunity

    Принципи управління персоналом сільськогосподарських підприємств (на прикладі Луганської області)

    Get PDF
    У статті проаналізовано сучасний стан сільськогосподарського виробництва в Луганській області та здійснена оцінка перспектив реформування управління персоналом на підприємствах АПК. Регресійним аналізом оцінено ступінь впливу деяких факторів на рентабельність персоналу. Рекомендується використання SWOT-аналізу для дослідження й формування раціонального управління персоналом підприємств АПК.Performed analysis of the current state of agriculture in the Luhansk region, evaluated the prospects for personnel resources reforming for the agricultural enterprises. The degree of factors influencing on profitability of personnel is appraised by the regressive analysis. SWOT-analysis is recommended for research and forming of agrarian enterprises rational management of a personnel

    Neural dynamics of accumulating and updating linguistic knowledge structures

    No full text
    Knowledge is acquired by generalization and integration across learning experiences, which can then be applied to future instances. This study provides novel insights into how linguistic associative knowledge is acquired by systematically tracking schematic knowledge formation while participants were learning an abstract artificial language organized by higher-order associative regularity. During learning, we found activity in the left inferior frontal gyrus in response to knowledge updating during feedback presentation, as well as in response to available accumulated knowledge during retrieval. A complementary signal was found in the caudate nucleus, where activity correlated with the availability of recently acquired knowledge during retrieval, suggesting it initially supports the retrieval of knowledge. Furthermore, we find that activity in a set of regions, including the medial prefrontal cortex and hippocampus, scaled with accumulated knowledge during feedback presentation, which might be indicative of increased generalization of features of the hierarchical knowledge structure. Together, these results provide a mechanistic insight into how linguistic associative knowledge is acquired by generalization across repeated learning experiences

    Innate Immune Training of Human Macrophages by Cathelicidin Analogs

    Get PDF
    Trained innate immunity can be induced in human macrophages by microbial ligands, but it is unknown if exposure to endogenous alarmins such as cathelicidins can have similar effects. Previously, we demonstrated sustained protection against infection by the chicken cathelicidin-2 analog DCATH-2. Thus, we assessed the capacity of cathelicidins to induce trained immunity. PMA-differentiated THP-1 (dTHP1) cells were trained with cathelicidin analogs for 24 hours and restimulated after a 3-day rest period. DCATH-2 training of dTHP-1 cells amplified their proinflammatory cytokine response when restimulated with TLR2/4 agonists. Trained cells displayed a biased cellular metabolism towards mTOR-dependent aerobic glycolysis and long-chain fatty acid accumulation and augmented microbicidal activity. DCATH-2-induced trained immunity was inhibited by histone acetylase inhibitors, suggesting epigenetic regulation, and depended on caveolae/lipid raft-mediated uptake, MAPK p38 and purinergic signaling. To our knowledge, this is the first report of trained immunity by host defense peptides

    Metabolic changes underlying drug resistance in the multiple myeloma tumor microenvironment

    Get PDF
    Multiple myeloma (MM) is characterized by the clonal expansion of malignant plasma cells in the bone marrow (BM). MM remains an incurable disease, with the majority of patients experiencing multiple relapses from different drugs. The MM tumor microenvironment (TME) and in particular bone-marrow stromal cells (BMSCs) play a crucial role in the development of drug resistance. Metabolic reprogramming is emerging as a hallmark of cancer that can potentially be exploited for cancer treatment. Recent studies show that metabolism is further adjusted in MM cells during the development of drug resistance. However, little is known about the role of BMSCs in inducing metabolic changes that are associated with drug resistance. In this Perspective, we summarize current knowledge concerning the metabolic reprogramming of MM, with a focus on those changes associated with drug resistance to the proteasome inhibitor Bortezomib (BTZ). In addition, we present proof-of-concept fluxomics (glucose isotope-tracing) and Seahorse data to show that co-culture of MM cells with BMSCs skews the metabolic phenotype of MM cells towards a drug-resistant phenotype, with increased oxidative phosphorylation (OXPHOS), serine synthesis pathway (SSP), TCA cycle and glutathione (GSH) synthesis. Given the crucial role of BMSCs in conveying drug resistance, insights into the metabolic interaction between MM and BMSCs may ultimately aid in the identification of novel metabolic targets that can be exploited for therapy

    Innate Immune Training of Human Macrophages by Cathelicidin Analogs

    Get PDF
    Trained innate immunity can be induced in human macrophages by microbial ligands, but it is unknown if exposure to endogenous alarmins such as cathelicidins can have similar effects. Previously, we demonstrated sustained protection against infection by the chicken cathelicidin-2 analog DCATH-2. Thus, we assessed the capacity of cathelicidins to induce trained immunity. PMA-differentiated THP-1 (dTHP1) cells were trained with cathelicidin analogs for 24 hours and restimulated after a 3-day rest period. DCATH-2 training of dTHP-1 cells amplified their proinflammatory cytokine response when restimulated with TLR2/4 agonists. Trained cells displayed a biased cellular metabolism towards mTOR-dependent aerobic glycolysis and long-chain fatty acid accumulation and augmented microbicidal activity. DCATH-2-induced trained immunity was inhibited by histone acetylase inhibitors, suggesting epigenetic regulation, and depended on caveolae/lipid raft-mediated uptake, MAPK p38 and purinergic signaling. To our knowledge, this is the first report of trained immunity by host defense peptides

    New insight into the catalytic mechanism of bacterial MraY from enzyme kinetics and docking studies

    Get PDF
    Phospho-MurNAc-pentapeptide translocase (MraY) catalyzes the synthesis of Lipid I, a bacterial peptidoglycan precursor. As such, MraY is essential for bacterial survival and therefore is an ideal target for developing novel antibiotics. However, the understanding of its catalytic mechanism, despite the recently determined crystal structure, remains limited. In the present study, the kinetic properties of Bacillus subtilis MraY (BsMraY) were investigated by fluorescence enhancement using dansylated UDP-Mur-NAc-pentapeptide and heptaprenyl phosphate (C35-P, shortchain homolog of undecaprenyl phosphate, the endogenous substrate ofMraY)as second substrate. Varying the concentrations of both of these substrates and fitting the kinetics data to two-substrate models showed that the concomitant binding of both UDPMurNAc-pentapeptide-DNS and C35-P to the enzyme is required before the release of the two products, Lipid I andUMP.We built a model of BsMraY and performed docking studies with the substrate C35-P to further deepen our understanding of how MraY accommodates this lipid substrate. Based on these modeling studies, a novel catalytic role was put forward for a fully conserved histidine residue inMraY(His-289 in BsMraY), which has been experimentally confirmed to be essential for MraY activity. Using the current model of BsMraY, we propose that a small conformational change is necessary to relocate the His-289 residue, such that the translocase reaction can proceed via a nucleophilic attack of the phosphate moiety of C35-P on bound UDP-MurNAc-pentapeptide
    corecore