5,773 research outputs found

    Spin transport in a one-dimensional anisotropic Heisenberg model

    Full text link
    We analytically and numerically study spin transport in a one-dimensional Heisenberg model in linear-response regime at infinite temperature. It is shown that as the anisotropy parameter Delta is varied spin transport changes from ballistic for Delta<1 to anomalous at the isotropic point Delta=1, to diffusive for finite Delta>1, ending up as a perfect isolator in the Ising limit of infinite Delta. Using perturbation theory for large Delta a quantitative prediction is made for the dependence of diffusion constant on Delta.Comment: 5 pages, 4 figures; v2.: few comments added and typos corrected; published versio

    Spin diffusion and the anisotropic spin-1/2 Heisenberg chain

    Full text link
    Measurements of the spin-lattice relaxation rate 1/T_1 by nuclear magnetic resonance for the one-dimensional Heisenberg antiferromagnet Sr_2CuO_3 have provided evidence for a diffusion-like contribution at finite temperature and small wave-vector. By analyzing real-time data for the auto- and nearest-neighbor spin-spin correlation functions obtained by the density-matrix renormalization group I show that such a contribution indeed exists for temperatures T>J, where J is the coupling constant, but that it becomes exponentially suppressed for T << J. I present evidence that the frequency-dependence of 1/T_1 in the Heisenberg case is smoothly connected to that in the free fermion case where the exponential suppression of the diffusion-like contribution is easily understood.Comment: 9 pages, 7 figure

    Transport properties of a spin-1/2 Heisenberg chain with an embedded spin-S impurity

    Full text link
    The finite temperature transport properties of a spin-1/2 anisotropic Heisenberg chain with an embedded spin-S impurity are studied. Using primarily numerical diagonalization techniques, we study the dependence of the dynamical spin and thermal conductivities on the lattice size, the magnitude of the impurity spin, the host-impurity coupling, the easy axis anisotropy, as well as the dependence on temperature. Particularly for the temperature dependence, we discuss the screening of the impurity by the chain eventually leading to the cutting or healing of the host chain. Numerical results are supported by analytical arguments obtained in the strong host-impurity coupling regime.Comment: 7 pages, 10 figure

    Determination of the relative resistance to ignition of selected turbopump materials in high-pressure, high-temperature, oxygen environments, volume 1

    Get PDF
    Advances in the design of the liquid oxygen, liquid hydrogen engines for the Space Transportation System call for the use of warm, high-pressure oxygen as the driving gas in the liquid oxygen turbopump. The NASA Lewis Research Center requested the NASA White Sands Test Facility (WSTF) to design a test program to determine the relative resistance to ignition of nine selected turbopump materials: Hastelloy X, Inconel 600, Invar 36, Monel K-500, nickel 200, silicon carbide, stainless steel 316, and zirconium copper. The materials were subjected to particle impact and to frictional heating in high-pressure oxygen

    Increased temperature in urban ground as source of sustainable energy

    Full text link
    This paper is part of the Proceedings of the 10th International Conference on Urban Regeneration and Sustainability (Sustainable City 2015). http://www.witconferences.comDensely urbanized areas are characterized by special microclimatic conditions with typically elevated temperatures in comparison with the rural surrounding. This phenomenon is known as the urban heat island (UHI) effect, but not restricted exclusively to the atmosphere. We also find significant warming of the urban subsurface and shallow groundwater bodies. Here, main sources of heat are elevated ground surface temperatures, direct thermal exploitation of aquifers and heat losses from buildings and other infrastructure. By measuring the shallow groundwater temperature in several European cities, we identify that heat sources and associated transport processes interact at multiple spatial and temporal scales. The intensity of a subsurface UHI can reach the values of above 4 K in city centres with hotspots featuring temperatures up to +20°C. In comparison with atmospheric UHIs, subsurface UHIs represent long-term accumulations of heat in a relatively sluggish environment. This potentially impairs urban groundwater quality and permanently influences subsurface ecosystems. From another point of view, however, these thermal anomalies can also be seen as hidden large-scale batteries that constitute a source of shallow geothermal energy. Based on our measurements, data surveys and estimated physical ground properties, it is possible to estimate the theoretical geothermal potential of the urban groundwater bodies beneath the studied cities. For instance, by decreasing the elevated temperature of the shallow aquifer in Cologne, Germany, by only 2 K, the obtained energy could supply the space-heating demand of the entire city for at least 2.5 years. In the city of Karlsruhe, it is estimated that about 30% of annual heating demand could be sustainably supplied by tapping the anthropogenic heat loss in the urban aquifer. These results reveal the attractive potential of heated urban ground as energy reservoir and storage, which is in place at many places worldwide but so far not integrated in any city energy plans.This work was supported by the Swiss National Science Foundation (SNSF) under grant number 200021L 144288, and the German Research Foundation (DFG), under grant number BL 1015/4-1

    Critical core mass for enriched envelopes: the role of H2O condensation

    Get PDF
    Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Once the protoplanet has acquired an atmosphere, the primordial envelope gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect in the final atmospheric composition and on the formation timescale of giant planets. Aims. To investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with the implementation of updated opacities for all ranges of metallicities and the software CEA to compute the equation of state. CEA computes the chemical equilibrium for an arbitrary mixture of gases and allows the condensation of some species, including water. This means that the latent heat of phase transitions is consistently incorporated in the total energy budget. Results. The critical core mass is found to decrease significantly when an enriched envelope composition is considered in the internal structure equations. A particular strong reduction of the critical core mass is obtained for planets whose envelope metallicity is larger than Z=0.45 when the outer boundary conditions are suitable for condensation of water to occur in the top layers of the atmosphere. We show that this effect is qualitatively preserved when the atmosphere is out of chemical equilibrium.Comment: Accepted for publication in A&

    Theoretical and material studies on thin-film electroluminescent devices

    Get PDF
    The effect of surface nucleation processes on the quality of ZnS layers grown on (001) GaAs substrates by molecular beam epitaxy is reported. Reflection high energy electron diffraction indicated that nucleation at high temperatures produced more planar surfaces than nucleation at low temperatures, but the crystalline quality as accessed by x ray double crystal diffractometry is relatively independent of nucleation temperature. A critical factor in layer quality was the initial roughness of the GaAs surfaces

    Device and method for frictionally testing materials for ignitability

    Get PDF
    Test apparatus for determining ignition characteristics of various metal in oxidizer environments simulating operating conditions for materials is invented. The test apparatus has a chamber through which the oxidizing agent flows, and means for mounting a stationary test sample therein, a powered, rotating shaft in the chamber rigidly mounts a second test sample. The shaft is axially movable to bring the samples into frictional engagement and heated to the ignition point. Instrumentation connected to the apparatus provides for observation of temperatures, pressures, loads on and speeds of the rotating shaft, and torques whereby components of stressed oxygen systems can be selected which will avoid accidental fires under working conditions

    Open XXZ spin chain: Nonequilibrium steady state and strict bound on ballistic transport

    Full text link
    Explicit matrix product ansatz is presented, in first two orders in the (weak) coupling parameter, for the non-equilibrium steady state of the homogeneous, nearest neighbor Heisenberg XXZ spin-1/2 chain driven by Lindblad operators which act only at the edges of the chain. The first order of the density operator becomes in thermodynamic limit an exact pseudo-local conservation law and yields -- via Mazur inequality -- a rigorous lower bound on the high temperature spin Drude weight. Such Mazur bound is a non-vanishing fractal function of the anisotropy parameter Delta for |Delta|<1.Comment: Slightly longer but essentially equivalent to a published versio
    corecore