260 research outputs found

    Extending the Support Theorem to Infinite Dimensions

    Get PDF
    The Radon transform is one of the most useful and applicable tools in functional analysis. First constructed by John Radon in 1917 it has now been adapted to several settings. One of the principle theorems involving the Radon transform is the Support Theorem. In this paper, we discuss how the Radon transform can be constructed in the white noise setting. We also develop a Support Theorem in this setting.Comment: 22 page

    A Limiting Process to Invert the Gauss-Radon Transform

    Get PDF
    In this work we extend the finite dimensional Radon transform [23] to the Gaussian measure. We develop an inversion formula for this GaussRadon transform by way of Fourier inversion formula. We then proceed to extend these results to the infinite dimensional setting

    Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta)

    Get PDF
    Historically, the invertebrate pathogens of the genus Helicosporidium were considered to be either protozoa or fungi, but the taxonomic position of this group has not been considered since 1931. Recently, a Helicosporidium sp., isolated from the blackfly Simulium jonesi Stone & Snoddy (Diptera: Simuliidae), has been amplified in the heterologous host Helicoverpa zea. Genomic DNA has been extracted from gradient-purified cysts. The 185, 28S and 5.8S regions of the Helicosporidium rDNA, as well as partial sequences of the actin and beta-tubulin genes, were amplified by PCR and sequenced. Comparative analysis of these nucleotide sequences was performed using neighbour-joining and maximum-parsimony methods. All inferred phylogenetic trees placed Helicosporidium sp. among the green algae (Chlorophyta), and this association was supported by bootstrap and parsimony jackknife values. Phylogenetic analysis focused on the green algae depicted Helicosporidium sp. as a close relative of Prototheca wickerhamii and Prototheca zopfii (Chlorophyta, Trebouxiophyceae), two achlorophylous, pathogenic green algae. On the basis of this phylogenetic analysis, Helicosporidium sp. is clearly neither a protist nor a fungus, but appears to be the first described algal invertebrate pathogen. These conclusions lead us to propose the transfer of the genus Helicosporidium to Chlorophyta, Trebouxiophyceae

    Life cycle and epizootiology of Amblyospora ferocis (Microspora: Amblyosporidae) in the mosquito Psorophora ferox (Diptera: Culicidae)

    Get PDF
    A natural population of Psorophora ferox (Humbold, 1820) infected with the microsporidium Amblyospora ferocis García et Becnel, 1994 was sampled weekly during a seven-month survey in Punta Lara, Buenos Aires Province, Argentina. The sequence of development of A. ferocis in larvae of P. ferox leading to the formation of meiospores followed the developmental pathway previously reported for various species of Amblyospora. The natural prevalence of A. ferocis in the larval population of P. ferox ranged from 0.4% to 13.8%. Spores were detected in the ovaries of field-collected females of P. ferox and were shown to be responsible for transovarial transmission of A. ferocis to the next generation of mosquito larvae in laboratory tests. These spores were binucleate and slightly pyriform in shape. The prevalence of A. ferocis in the adult population ranged from 2.7% to 13.9%. Data on effects of the infection on female fecundity showed that infected field-collected adults of P. ferox laid an average of 47.6 ± 6.5 eggs of which 35.8% ± 4.1% hatched. Uninfected field-collected adults of P. ferox laid 82.8 ± 6.8 eggs of which 64.1% ± 5.5% hatched. Six species of copepods living together with P. ferox were fed meiospores from field-infected larvae but none became infected. Horizontal transmission of A. ferocis to P. ferox larvae remains unknown.Centro de Estudios Parasitológicos y de Vectore

    Life cycle and epizootiology of Amblyospora ferocis (Microspora: Amblyosporidae) in the mosquito Psorophora ferox (Diptera: Culicidae)

    Get PDF
    A natural population of Psorophora ferox (Humbold, 1820) infected with the microsporidium Amblyospora ferocis García et Becnel, 1994 was sampled weekly during a seven-month survey in Punta Lara, Buenos Aires Province, Argentina. The sequence of development of A. ferocis in larvae of P. ferox leading to the formation of meiospores followed the developmental pathway previously reported for various species of Amblyospora. The natural prevalence of A. ferocis in the larval population of P. ferox ranged from 0.4% to 13.8%. Spores were detected in the ovaries of field-collected females of P. ferox and were shown to be responsible for transovarial transmission of A. ferocis to the next generation of mosquito larvae in laboratory tests. These spores were binucleate and slightly pyriform in shape. The prevalence of A. ferocis in the adult population ranged from 2.7% to 13.9%. Data on effects of the infection on female fecundity showed that infected field-collected adults of P. ferox laid an average of 47.6 ± 6.5 eggs of which 35.8% ± 4.1% hatched. Uninfected field-collected adults of P. ferox laid 82.8 ± 6.8 eggs of which 64.1% ± 5.5% hatched. Six species of copepods living together with P. ferox were fed meiospores from field-infected larvae but none became infected. Horizontal transmission of A. ferocis to P. ferox larvae remains unknown.Centro de Estudios Parasitológicos y de Vectore

    Comparison of plastid 16S rDNA (rrn16) genes from Helicosporidium spp.: evidence supporting the reclassification of Helicosporidia as green algae (Chlorophyta)

    Get PDF
    The Helicosporidia are invertebrate pathogens that have recently been identified as non-photosynthetic green algae (Chlorophyta). In order to confirm the algal nature of the genus Helicosporidium, the presence of a retained chloroplast genome in Helicosporidia cells was investigated. Fragments homologous to plastid 16S rRNA (rrn16) genes were amplified successfully from cellular DNA extracted from two different Helicosporidium isolates. The fragment sequences are 1269 and 1266 bp long, are very AT-rich (60.7 %) and are similar to homologous genes sequenced from non-photosynthetic green algae. Maximum-parsimony, maximum-likelihood and neighbour-joining methods were used to infer phylogenetic trees from an rrn16 sequence alignment. All trees depicted the Helicosporidia as sister taxa to the non-photosynthetic, pathogenic alga Prototheca zopfii. Moreover, the trees identified Helicosporidium spp. as members of a clade that included the heterotrophic species Prototheca spp. and the mesotrophic species Chlorella protothecoides. The clade is always strongly supported by bootstrap values, suggesting that all these organisms share a most recent common ancestor. Phylogenetic analyses inferred from plastid 16S rRNA genes confirmed that the Helicosporidia are non-photosynthetic green algae, close relatives of the genus Prototheca (Chlorophyta, Trebouxiophyceae). Such phylogenetic affinities suggest that Helicosporidium spp. are likely to possess Prototheca-like organelles and organelle genomes
    • …
    corecore