32 research outputs found

    Catch-Up Growth Following Fetal Growth Restriction Promotes Rapid Restoration of Fat Mass but Without Metabolic Consequences at One Year of Age

    Get PDF
    BACKGROUND: Fetal growth restriction (FGR) followed by rapid weight gain during early life has been suggested to be the initial sequence promoting central adiposity and insulin resistance. However, the link between fetal and early postnatal growth and the associated anthropometric and metabolic changes have been poorly studied. METHODOLOGY/PRINCIPAL FINDINGS: Over the first year of post-natal life, changes in body mass index, skinfold thickness and hormonal concentrations were prospectively monitored in 94 infants in whom the fetal growth velocity had previously been measured using a repeated standardized procedure of ultrasound fetal measurements. 45 infants, thinner at birth, had experienced previous FGR (FGR+) regardless of birth weight. Growth pattern in the first four months of life was characterized by greater change in BMI z-score in FGR+ (+1.26+/-1.2 vs +0.58 +/-1.17 SD in FGR-) resulting in the restoration of BMI and of fat mass to values similar to FGR-, independently of caloric intakes. Growth velocity after 4 months was similar and BMI z-score and fat mass remained similar at 12 months of age. At both time-points, fetal growth velocity was an independent predictor of fat mass in FGR+. At one year, fasting insulin levels were not different but leptin was significantly higher in the FGR+ (4.43+/-1.41 vs 2.63+/-1 ng/ml in FGR-). CONCLUSION: Early catch-up growth is related to the fetal growth pattern itself, irrespective of birth weight, and is associated with higher insulin sensitivity and lower leptin levels after birth. Catch-up growth promotes the restoration of body size and fat stores without detrimental consequences at one year of age on body composition or metabolic profile. The higher leptin concentration at one year may reflect a positive energy balance in children who previously faced fetal growth restriction

    Dutch women with a low birth weight have an increased risk of myocardial infarction later in life: a case control study

    Get PDF
    BACKGROUND: To investigate whether low birth weight increases the risk of myocardial infarction later in life in women. METHODS: Nationwide population-based case-control study. Patients and controls: 152 patients with a first myocardial infarction before the age of 50 years in the Netherlands. 568 control women who had not had a myocardial infarction stratified for age, calendar year of the index event, and area of residence. RESULTS: Birth weight in the patient group was significantly lower than in control women (3214 vs. 3370 gram, mean difference -156.3 gram (95%CI -9.5 to -303.1). The odds ratio for myocardial infarction, associated with a birth weight lower than 3000 gram (20(th )percentile in controls) compared to higher than 3000 gram was 1.7 (95%CI 1.1–2.7), while the odds ratio for myocardial infarction for children with a low birth weight (< 2000 g) compared to a birth weight ≥ 2000 g was 2.4 (95%CI 1.0 – 5.8). Both figures did not change after adjustment for putative confounders (age, education level, body mass index, waist-hip ratio, hypertension, diabetes, hypercholesterolemia, smoking, and family history of cardiovascular disease). CONCLUSIONS: Low birth weight is associated with an increased risk of myocardial infarction before age of 50 in Dutch women

    Latin American Consensus: Children Born Small for Gestational Age

    Get PDF
    72-87Cuatrimestra

    Insulin gene VNTR genotype is associated with insulin sensitivity and secretion in infancy

    No full text
    AIMS We have previously demonstrated that insulin sensitivity and secretion at age 1 year was in part related to variation in weight and height gain during infancy. In order to determine whether genetic variation at the insulin gene could also influence these associations, we have studied the relationship between insulin gene variable number of tandem repeat (INS VNTR) genotypes, insulin secretion and early postnatal growth. METHODS We assessed fasting and dynamic insulin secretion in 99 healthy infants at age 1 year, using a short intravenous glucose tolerance test (sIVGTT). Infants were genotyped at the -23 HphI locus, as a surrogate marker for INS VNTR allele classes I and III. Anthropometric data were recorded at birth and at 1 year. Data are shown as median (interquartile range). RESULTS Fasting insulin levels were higher in III/III infants (n = 9) than in I/I infants [n = 55; 27.4 (17.6-75.6) pmol/l vs. 18.1 (10.3-25.2) pmol/l; P < 0.05]. Insulin secretion during the sIVGTT, as estimated by the serum insulin area under the curve, was also higher in III/III infants [2417 (891-4041) pmol min/l vs. 1208 (592-2284) pmol min/l; P < 0.05]. Fasting and postload plasma glucose levels were similar in both groups. Analysis of covariance showed that genotype differences in fasting insulin sensitivity and insulin secretion were independent of size at birth, postnatal growth velocity and current body mass index. CONCLUSIONS Significant associations between INS VNTR genotype and both insulin sensitivity and secretion were apparent in infancy; these might interact with childhood appetite and nutrition to impact the development of childhood obesity and insulin resistance

    Restriction of placental growth in sheep impairs insulin secretion but not sensitivity before birth

    No full text
    Restricted growth before birth is associated with impaired insulin secretion but with initially enhanced insulin sensitivity in early postnatal life, which then progresses to insulin resistance and impaired glucose homeostasis by adulthood. This suggests that prenatal restraint impairs insulin secretion, but increases insulin sensitivity, before birth. Poor placental growth and function are major causes of restricted fetal growth in humans. We have therefore investigated the effects of restricted placental growth and function on plasma glucose, α-amino nitrogen and insulin concentrations and glucose- and arginine-stimulated insulin secretion in the fetal sheep at 120 and 140 days gestational age, and on insulin sensitivity, measured by hyperinsulinaemic euglycaemic clamp, at 130 days gestational age. Placental restriction decreased fetal blood pH and oxygen content, and weight in late gestation by ∼20%. Reduced fetal and placental weights and indices of poor placental function, in particular fetal hypoxia and hypoglycaemia, were associated with impaired glucose- and arginine-stimulated insulin secretion, but not with changes in insulin sensitivity in the fetal sheep. We conclude that the impaired insulin secretion capacity reported in children and adults after intrauterine growth restriction, and in the neonatal and young adult sheep which is small at birth, is present in utero and persists. Whether this reflects the actions of the adverse intrauterine environment or changes to intrinsic capacity is unclear, but in utero interventions may be necessary to improve postnatal insulin secretion in the infant who is growth-restricted before birth
    corecore