1,087 research outputs found

    Estudios sobre el mecanismo regulador del tono de la fibra lisa

    Get PDF

    El metabolismo basal en los pesos extremos

    Get PDF

    Dynamical Analysis of Nearby ClustErs. Automated astrometry from the ground: precision proper motions over wide field

    Full text link
    The kinematic properties of the different classes of objects in a given association hold important clues about its member's history, and offer a unique opportunity to test the predictions of the various models of stellar formation and evolution. DANCe (standing for Dynamical Analysis of Nearby ClustErs) is a survey program aimed at deriving a comprehensive and homogeneous census of the stellar and substellar content of a number of nearby (<1kpc) young (<500Myr) associations. Whenever possible, members will be identified based on their kinematics properties, ensuring little contamination from background and foreground sources. Otherwise, the dynamics of previously confirmed members will be studied using the proper motion measurements. We present here the method used to derive precise proper motion measurements, using the Pleiades cluster as a test bench. Combining deep wide field multi-epoch panchromatic images obtained at various obervatories over up to 14 years, we derive accurate proper motions for the sources present in the field of the survey. The datasets cover ~80 square degrees, centered around the Seven Sisters. Using new tools, we have computed a catalog of 6116907 unique sources, including proper motion measurements for 3577478 of them. The catalogue covers the magnitude range between i=12~24mag, achieving a proper motion accuracy <1mas/yr for sources as faint as i=22.5mag. We estimate that our final accuracy reaches 0.3mas/yr in the best cases, depending on magnitude, observing history, and the presence of reference extragalactic sources for the anchoring onto the ICRS.Comment: Accepted for publication in A&

    The extended HeII4686-emitting region in IZw18 unveiled: clues for peculiar ionizing sources

    Get PDF
    New integral field spectroscopy has been obtained for IZw18, the nearby lowest-metallicity galaxy considered our best local analog of systems forming at high-z. Here we report the spatially resolved spectral map of the nebular HeII4686 emission in IZw18, from which we derived for the first time its total HeII-ionizing flux. Nebular HeII emission implies the existence of a hard radiation field. HeII-emitters are observed to be more frequent among high-z galaxies than for local objects. So investigating the HeII-ionizing source(s) in IZw18 may reveal the ionization processes at high-z. HeII emission in star-forming galaxies, has been suggested to be mainly associated with Wolf-Rayet stars (WRs), but WRs cannot satisfactorily explain the HeII-ionization at all times, in particular at lowest metallicities. Shocks from supernova remnants, or X-ray binaries, have been proposed as additional potential sources of HeII-ionizing photons. Our data indicate that conventional HeII-ionizing sources (WRs, shocks, X-ray binaries) are not sufficient to explain the observed nebular HeII4686 emission in IZw18. We find that the HeII-ionizing radiation expected from models for either low-metallicity super-massive O stars or rotating metal-free stars could account for the HeII-ionization budget measured, while only the latter models could explain the highest values of HeII4686/Hbeta observed. The presence of such peculiar stars in IZw18 is suggestive and further investigation in this regard is needed. This letter highlights that some of the clues of the early Universe can be found here in our cosmic backyard.Comment: 6 pages, 3 figures. Accepted for publication in ApJ Letter

    Single polaron properties of the breathing-mode Hamiltonian

    Full text link
    We investigate numerically various properties of the one-dimensional (1D) breathing-mode polaron. We use an extension of a variational scheme to compute the energies and wave-functions of the two lowest-energy eigenstates for any momentum, as well as a scheme to compute directly the polaron Greens function. We contrast these results with results for the 1D Holstein polaron. In particular, we find that the crossover from a large to a small polaron is significantly sharper. Unlike for the Holstein model, at moderate and large couplings the breathing-mode polaron dispersion has non-monotonic dependence on the polaron momentum k. Neither of these aspects is revealed by a previous study based on the self-consistent Born approximation
    corecore