8,638 research outputs found

    Uniform semiclassical approximations on a topologically non-trivial configuration space: The hydrogen atom in an electric field

    Full text link
    Semiclassical periodic-orbit theory and closed-orbit theory represent a quantum spectrum as a superposition of contributions from individual classical orbits. Close to a bifurcation, these contributions diverge and have to be replaced with a uniform approximation. Its construction requires a normal form that provides a local description of the bifurcation scenario. Usually, the normal form is constructed in flat space. We present an example taken from the hydrogen atom in an electric field where the normal form must be chosen to be defined on a sphere instead of a Euclidean plane. In the example, the necessity to base the normal form on a topologically non-trivial configuration space reveals a subtle interplay between local and global aspects of the phase space structure. We show that a uniform approximation for a bifurcation scenario with non-trivial topology can be constructed using the established uniformization techniques. Semiclassical photo-absorption spectra of the hydrogen atom in an electric field are significantly improved when based on the extended uniform approximations

    Hybrid propulsion systems for motor vehicles with predominantly intermittent modes of operation

    Get PDF
    A small delivery vehicle was equipped with a flywheel-hybrid drive and compared in test stand and driving tests with a conventional drive vehicle. It turned out that with the hybrid drive, energy can be saved and exhaust emissions can be reduced

    Semiclassical quantization of the hydrogen atom in crossed electric and magnetic fields

    Get PDF
    The S-matrix theory formulation of closed-orbit theory recently proposed by Granger and Greene is extended to atoms in crossed electric and magnetic fields. We then present a semiclassical quantization of the hydrogen atom in crossed fields, which succeeds in resolving individual lines in the spectrum, but is restricted to the strongest lines of each n-manifold. By means of a detailed semiclassical analysis of the quantum spectrum, we demonstrate that it is the abundance of bifurcations of closed orbits that precludes the resolution of finer details. They necessitate the inclusion of uniform semiclassical approximations into the quantization process. Uniform approximations for the generic types of closed-orbit bifurcation are derived, and a general method for including them in a high-resolution semiclassical quantization is devised

    The hydrogen atom in an electric field: Closed-orbit theory with bifurcating orbits

    Full text link
    Closed-orbit theory provides a general approach to the semiclassical description of photo-absorption spectra of arbitrary atoms in external fields, the simplest of which is the hydrogen atom in an electric field. Yet, despite its apparent simplicity, a semiclassical quantization of this system by means of closed-orbit theory has not been achieved so far. It is the aim of this paper to close that gap. We first present a detailed analytic study of the closed classical orbits and their bifurcations. We then derive a simple form of the uniform semiclassical approximation for the bifurcations that is suitable for an inclusion into a closed-orbit summation. By means of a generalized version of the semiclassical quantization by harmonic inversion, we succeed in calculating high-quality semiclassical spectra for the hydrogen atom in an electric field

    Boltzmann-type approach to transport in weakly interacting one-dimensional fermionic systems

    Full text link
    We investigate transport properties of one-dimensional fermionic tight binding models featuring nearest and next-nearest neighbor hopping, where the fermions are additionally subject to a weak short range mutual interaction. To this end we employ a pertinent approach which allows for a mapping of the underlying Schr\"odinger dynamics onto an adequate linear quantum Boltzmann equation. This approach is based on a suitable projection operator method. From this Boltzmann equation we are able to numerically obtain diffusion coefficients in the case of non-vanishing next-nearest neighbor hopping, i.e., the non-integrable case, whereas the diffusion coefficient diverges without next-nearest neighbor hopping. For the latter case we analytically investigate the decay behavior of the current with the result that arbitrarily small parts of the current relax arbitrarily slowly which suggests anomalous diffusive transport behavior within the scope of our approach.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.

    Photoabsorption spectra of the diamagnetic hydrogen atom in the transition regime to chaos: Closed orbit theory with bifurcating orbits

    Full text link
    With increasing energy the diamagnetic hydrogen atom undergoes a transition from regular to chaotic classical dynamics, and the closed orbits pass through various cascades of bifurcations. Closed orbit theory allows for the semiclassical calculation of photoabsorption spectra of the diamagnetic hydrogen atom. However, at the bifurcations the closed orbit contributions diverge. The singularities can be removed with the help of uniform semiclassical approximations which are constructed over a wide energy range for different types of codimension one and two catastrophes. Using the uniform approximations and applying the high-resolution harmonic inversion method we calculate fully resolved semiclassical photoabsorption spectra, i.e., individual eigenenergies and transition matrix elements at laboratory magnetic field strengths, and compare them with the results of exact quantum calculations.Comment: 26 pages, 9 figures, submitted to J. Phys.

    Smoking Experimentation in Adolescents. Is There a Risk for Health?

    Full text link
    peer reviewedIt is clear that even low rate smoking is hazardous for health, the risk being independently increased by the daily number of cigarettes smoked and by the duration of smoking. The question raised is thus: will an adolescent experimenter be a non smoker, an experimenter for ever, a regular smoker, light or heavy? This short review shows that there are numerous factors from genetics, to familial environment not limited to tobacco issues, smoking situation at school as well as school performances of the student, and also individual psychological characteristics. The experimenter is a very good target for smoking cessation actions and should deserve particular attention from preventive medicine and, thus, from school medicine, before he becomes a regular smoker, who will be more resistant to smoking cessation programs

    Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography

    Get PDF
    © 2016 The Authors.Fluorescent proteins and dyes are routine tools for biological research to describe the behavior of genes, proteins, and cells, as well as more complex physiological dynamics such as vessel permeability and pharmacokinetics. The use of these probes in whole body in vivo imaging would allow extending the range and scope of current biomedical applications and would be of great interest. In order to comply with a wide variety of application demands, in vivo imaging platform requirements span from wide spectral coverage to precise quantification capabilities. Fluorescence molecular tomography (FMT) detects and reconstructs in three dimensions the distribution of a fluorophore in vivo. Noncontact FMT allows fast scanning of an excitation source and noninvasive measurement of emitted fluorescent light using a virtual array detector operating in free space. Here, a rigorous process is defined that fully characterizes the performance of a custom-built horizontal noncontact FMT setup. Dynamic range, sensitivity, and quantitative accuracy across the visible spectrum were evaluated using fluorophores with emissions between 520 and 660 nm. These results demonstrate that high-performance quantitative three-dimensional visible light FMT allowed the detection of challenging mesenteric lymph nodes in vivo and the comparison of spectrally distinct fluorescent reporters in cell culture
    corecore