Semiclassical periodic-orbit theory and closed-orbit theory represent a
quantum spectrum as a superposition of contributions from individual classical
orbits. Close to a bifurcation, these contributions diverge and have to be
replaced with a uniform approximation. Its construction requires a normal form
that provides a local description of the bifurcation scenario. Usually, the
normal form is constructed in flat space. We present an example taken from the
hydrogen atom in an electric field where the normal form must be chosen to be
defined on a sphere instead of a Euclidean plane. In the example, the necessity
to base the normal form on a topologically non-trivial configuration space
reveals a subtle interplay between local and global aspects of the phase space
structure. We show that a uniform approximation for a bifurcation scenario with
non-trivial topology can be constructed using the established uniformization
techniques. Semiclassical photo-absorption spectra of the hydrogen atom in an
electric field are significantly improved when based on the extended uniform
approximations