199 research outputs found

    Rotor loss reduction using segmented inverter in surface-mounted permanent magnet drive

    Get PDF
    In this paper, the influence of different switching modulation arrangements, i.e. current waveform modulation- and phase-shift, on the resultant current waveform of an electrical machine drive consisting of a two segment inter-leaved inverter feeding a surface-mounted permanent magnet (SPM) machine with two identical sets of three phase windings is investigated. The modulation- and phase-shift have been illustrated and the influence of the different modulation and frequency indices have been studied. Furthermore, the torque, and rotor eddy currents and core losses are calculated using FEA when either modulation-shifted or phase-shifted current waveforms are generated and fed to the machine. It is found that using modulation-shift can reduce the current harmonic substantially however the inverter requires two sets of input signals. On the other hand, although the current harmonic reduction is less than that of the modulation-shift, the phase-shift layout can be employed using one set of input signals with a signal delay

    Étude chimique et spectrographique de quelques amidoximes et de leurs dérivés

    Full text link

    Electromagnetic and Mechanical Analysis of High Speed SPM Rotor with Copper Shield

    Get PDF
    For high-speed applications, the surface-mounted permanent magnet (SPM) machine is preferred due to its high torque density and efficiency. However, induced eddy currents in the rotor conductive parts result in a loss of efficiency and rotor heating. Therefore, several methods to reduce such losses have been proposed in the literature including copper shielding. In this paper, a high-speed SPM machine rotor with a copper shield is designed and investigated both electromagnetically and mechanically. Several quantitative investigations including placing the copper sheet around the retaining sleeve or magnets, different copper sheet and airgap thicknesses, different retaining sleeve materials, different harmonic contents in the current waveform, i.e. pulse amplitude modulation (PAM) and pulse width modulation (PWM) generated waveforms, and different frequencies and current levels are reported. Additionally, a mechanical analysis investigating possible failure modes of the rotor with the copper sheet is reported

    Evaluation of Loss Coefficient For Stand Alone Radiator

    Get PDF
    Abstract In the UK, domestic heating contributes to about 40% of annual energy consumption. Effective and efficient heating systems are essential to drive the cost of heating down. Although there are several types of heating systems, radiators are the most popular heat emitters. Head loss in a radiator depends on various design parameters based on fluid flow path conditions and design of the radiator. The work presented in this paper identifies and compares the loss co-efficient for two most common configurations of radiators used in domestic heating systems. These are Bottom-Bottom Opposite Ends (BBOE) and Bottom-Top Opposite Ends (BTOE) configurations for a standalone system. In a standalone radiator design the loss co-efficient K value varies with the panel configuration and flow path in the BBOE and BTOE layouts. Similar to loss co-efficient in a pipe system the K value in a radiator system is a function of the Reynolds number. It has been found that double and single panel radiators have significantly different behaviour for the two flow layouts with higher K values for the BTOE configuration at lower velocity

    Application of the LymphGen classification tool to 928 clinically and genetically-characterised cases of diffuse large B cell lymphoma (DLBCL).

    Get PDF
    We recently published results of targeted sequencing applied to 928 unselected cases of DLBCL registered in the Haematological Malignancy Research Network (HMRN) registry (1). Clustering allowed us to resolve five genomic subtypes. These subtypes shared considerable overlap with those proposed in two independent genomic studies(2, 3), suggesting the potential to use genetics to stratify patients by both risk and biology. In the original studies, clustering techniques were applied to sample cohorts to reveal molecular substructure, but left open the challenge of how to classify an individual patient. This was addressed by the LymphGen classification tool (4). LymphGen assigns an individual case to one of six molecular subtypes. The tool accommodates data from exome or targeted sequencing, either with or without copy number variant (CNV) data. Separate gene expression data allows classification of a seventh, MYC-driven subtype defined by a double hit (DHL) or molecular high-grade (MHG) gene expression signature(5-7).HR was funded by a studentship from the Medical Research Council. DH was supported by a Clinician Scientist Fellowship from the Medical Research Council (MR/M008584/1). The Hodson laboratory receives core funding from Wellcome and MRC to the Wellcome-MRC Cambridge Stem Cell Institute and core funding from the CRUK Cambridge Cancer Centre. HMRN is supported by BCUK 15037 and CRUK 18362

    Mutation screening using formalin-fixed paraffin-embedded tissues: a stratified approach according to DNA quality.

    Get PDF
    DNA samples from formalin-fixed paraffin-embedded tissues are highly degraded with variable quality, and this imposes a big challenge for targeted sequencing due to false positives, largely caused by PCR errors and cytosine deamination. To eliminate false positives, a common practice is to validate the detected variants by Sanger sequencing or perform targeted sequencing in duplicate. Technically, PCR errors could be removed by molecular barcoding of template DNA prior to amplification as in the HaloPlexHS design. Nonetheless, it is uncertain to what extent variants detected using this approach should be further validated. Here, we addressed this question by correlating variant reproducibility with DNA quality using HaloPlexHS target enrichment and Illumina HiSeq4000, together with an in-house validated variant calling algorithm. The overall sequencing coverage, as shown by analyses of 70 genes in 266 cases of large B-cell lymphoma, was excellent (98%) in DNA samples amenable for PCR of ≥400 bp, but suboptimal (92%) and poor (80%) in those amenable for PCR of 300 bp and 200 bp respectively. By mutation analysis in duplicate in 93 cases, we demonstrated that 20 alternative allele depth (AAD) was an optimal cut-off value for separating reproducible from non-reproducible variants in DNA samples amenable for PCR of ≥300 bp, with 97% sensitivity and 100% specificity. By cross validation with a previously established targeted sequencing protocol by Fluidigm-PCR and Illumina MiSeq, the HaloPlexHS protocol was shown to be highly sensitive and specific in mutation screening. To conclude, we proposed a stratified approach for mutation screening by HaloplexHS and Illumina HiSeq4000 according to DNA quality. DNA samples with good quality (≥400 bp) are amenable for mutation analysis with a single replicate, with only variants at 15-20 AAD requiring for further validation, while those with suboptimal quality (300 bp) are better analysed in duplicate with reproducible variants at >15 AAD regarded as true genetic changes

    Longitudinal expression profiling identifies a poor risk subset of patients with ABC-type Diffuse Large B Cell Lymphoma.

    Get PDF
    Despite the effectiveness of immuno-chemotherapy, 40% of patients with diffuse large B-cell lymphoma (DLBCL) experience relapse or refractory disease. Longitudinal studies have previously focused on the mutational landscape of relapse but falling short of providing a consistent relapse-specific genetic signature. In our study, we have focussed attention on the changes in gene expression profile accompanying DLBCL relapse using archival paired diagnostic/relapse specimens from 38 de novo DLBCL patients. Cell of origin remained stable from diagnosis to relapse in 84% of patients, with only a single patient showing COO switching from ABC to GCB. Analysis of the transcriptomic changes that occur following relapse suggest ABC and GCB relapses are mediated via different mechanisms. We developed a 30-gene discriminator for ABC-DLBCLs derived from relapse-associated genes, that defined clinically distinct high and low risk subgroups in ABC-DLBCLs at diagnosis in datasets comprising both population-based and clinical trial cohorts. This signature also identified a population of <60-year-old patients with superior PFS and OS treated with Ibrutinib-R-CHOP as part of the PHOENIX trial. Altogether this new signature adds to the existing toolkit of putative genetic predictors now available in DLBCL that can be readily assessed as part of prospective clinical trials
    corecore