1,188 research outputs found

    Absence of dynamical localization in interacting driven systems

    Full text link
    Using a numerically exact method we study the stability of dynamical localization to the addition of interactions in a periodically driven isolated quantum system which conserves only the total number of particles. We find that while even infinitesimally small interactions destroy dynamical localization, for weak interactions density transport is significantly suppressed and is asymptotically diffusive, with a diffusion coefficient proportional to the interaction strength. For systems tuned away from the dynamical localization point, even slightly, transport is dramatically enhanced and within the largest accessible systems sizes a diffusive regime is only pronounced for sufficiently small detunings.Comment: Scipost resubmission. 14 pages, 4 figures. Changes to the figures. Corrects a few typo

    Multifractality and its role in anomalous transport in the disordered XXZ spin-chain

    Get PDF
    The disordered XXZ model is a prototype model of the many-body localization transition (MBL). Despite numerous studies of this model, the available numerical evidence of multifractality of its eigenstates is not very conclusive due severe finite size effects. Moreover it is not clear if similarly to the case of single-particle physics, multifractal properties of the many-body eigenstates are related to anomalous transport, which is observed in this model. In this work, using a state-of-the-art, massively parallel, numerically exact method, we study systems of up to 24 spins and show that a large fraction of the delocalized phase flows towards ergodicity in the thermodynamic limit, while a region immediately preceding the MBL transition appears to be multifractal in this limit. We discuss the implication of our finding on the mechanism of subdiffusive transport.Comment: 13 pages, 8 figure

    Spontaneous Expulsion of Giant Lipid Vesicles Induced by Laser Tweezers

    Get PDF
    Irradiation of a giant unilamellar lipid bilayer vesicle with a focused laser spot leads to a tense pressurized state which persists indefinitely after laser shutoff. If the vesicle contains another object it can then be gently and continuously expelled from the tense outer vesicle. Remarkably, the inner object can be almost as large as the parent vesicle; its volume is replaced during the exit process. We offer a qualitative theoretical model to explain these and related phenomena. The main hypothesis is that the laser trap pulls in lipid and ejects it in the form of submicron objects, whose osmotic activity then drives the expulsion.Comment: Plain TeX file; uses harvmac and epsf; .ps available at http://dept.physics.upenn.edu/~nelson/expulsion.p

    Signature of heavy Majorana neutrinos at a linear collider: Enhanced charged Higgs pair production

    Full text link
    A charged Higgs pair can be produced at an ee collider through a t-channel exchange of a heavy neutrino (N) via e^+ e^- -> H^+ H^- and, if N is a Majorana particle, also via the lepton number violating (LNV) like-sign reaction e^\pm e^\pm \to H^\pm H^\pm. Assuming no a-priori relation between the effective eNH^+ coupling (\xi) and light neutrino masses, we show that this interaction vertex can give a striking enhancement to these charged Higgs pair production processes. In particular, the LNV H^-H^- signal can probe N at the ILC in the mass range 100 GeV < m_N < 10^4 TeV and with the effective mixing angle, \xi, in the range 10^{-4} < \xi^2 < 10^{-8} - well within its perturbative unitarity bound and the neutrinoless double beta decay (\beta\beta_{0\nu}) limit. The lepton number conserving (LNC) e^+ e^- \to H^+ H^- mode can be sensitive to, e.g., an O(10) TeV heavy Majorana neutrino at a 500 GeV International Linear Collider (ILC), if \xi^2 > 0.001.Comment: Latex, 5 pages, 3 figures. V2 as published in PR

    Anomalous thermalization and transport in disordered interacting Floquet systems

    Full text link
    Local observables in generic periodically driven closed quantum systems are known to relax to values described by periodic infinite temperature ensembles. At the same time, ergodic static systems exhibit anomalous thermalization of local observables and satisfy a modified version of the eigenstate thermalization hypothesis (ETH), when disorder is present. This raises the question, how does the introduction of disorder affect relaxation in periodically driven systems? In this work, we analyze this problem by numerically studying transport and thermalization in an archetypal example. We find that thermalization is anomalous and is accompanied by subdiffusive transport with a disorder dependent dynamical exponent. Distributions of matrix elements of local operators in the eigenbases of a family of effective time-independent Hamiltonians, which describe the stroboscopic dynamics of such systems, show anomalous departures from predictions of ETH signaling that only a modified version of ETH is satisfied. The dynamical exponent is shown to be related to the scaling of the variance of these distributions with system size.Comment: 7 pages, 8 figures, version published in Phys. Rev. B (Rapid Communication

    A systematic review of treating recurrent head and neck cancer: a reintroduction of brachytherapy with or without surgery.

    Get PDF
    Purpose: To review brachytherapy use in recurrent head and neck carcinoma (RHNC) with focus on its efficacy and complication rates. Material and methods: A literature search of PubMed, Ovid, Google Scholar, and Scopus was conducted from 1990 to 2017. Publications describing treatment of RHNC with brachytherapy with or without surgery were included. The focus of this review is on oncologic outcomes and the safety of brachytherapy in the recurrent setting. Results: Thirty studies involving RHNC treatment with brachytherapy were reviewed. Brachytherapy as adjunctive treatment to surgical resection appears to be associated with an improved local regional control and overall survival, when compared with the published rates for re-irradiation utilizing external beam radiotherapy (RT) or brachytherapy alone. Safety data remains variable with different isotopes and dose rates with implantable brachytherapy demonstrating a tolerable side effect profile. Conclusions: Although surgery remains a mainstay treatment for RHNC, intraoperative interstitial brachytherapy delivery as adjunctive therapy may improve the treatment outcome and may be associated with fewer complication rates as compared to reirradiation using external beam radiotherapy. Further investigations are required to elucidate the role of brachytherapy for RHNC

    Injury severity and serum amyloid A correlate with plasma oxidation-reduction potential in multi-trauma patients: a retrospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In critical injury, the occurrence of increased oxidative stress or a reduced antioxidant status has been observed. The purpose of this study was to correlate the degree of oxidative stress, by measuring the oxidation-reduction potential (ORP) of plasma in the critically injured, with injury severity and serum amyloid A (SAA) levels.</p> <p>Methods</p> <p>A total of 140 subjects were included in this retrospective study comprising 3 groups: healthy volunteers (N = 21), mild to moderate trauma (ISS < 16, N = 41), and severe trauma (ISS ≥ 16, N = 78). For the trauma groups, plasma was collected on an almost daily basis during the course of hospitalization. ORP analysis was performed using a microelectrode, and ORP maxima were recorded for the trauma groups. SAA, a sensitive marker of inflammation in critical injury, was measured by liquid chromatography/mass spectrometry.</p> <p>Results</p> <p>ORP maxima were reached on day 3 (± 0.4 SEM) and day 5 (± 0.5 SEM) for the ISS < 16 and ISS ≥ 16 groups, respectively. ORP maxima were significantly higher in the ISS < 16 (-14.5 mV ± 2.5 SEM) and ISS ≥ 16 groups (-1.1 mV ± 2.3 SEM) compared to controls (-34.2 mV ± 2.6 SEM). Also, ORP maxima were significantly different between the trauma groups. SAA was significantly elevated in the ISS ≥ 16 group on the ORP maxima day compared to controls and the ISS < 16 group.</p> <p>Conclusion</p> <p>The results suggest the presence of an oxidative environment in the plasma of the critically injured as measured by ORP. More importantly, ORP can differentiate the degree of oxidative stress based on the severity of the trauma and degree of inflammation.</p

    Stress Hyperglycemia in Critically Ill Patients: Insight Into Possible Molecular Pathways

    Get PDF
    Severe sepsis, systemic inflammatory response syndrome (SIRS), and traumatic brain injury are frequently associated with hyperglycemia in non-diabetic patients. In patients suffering from any of these conditions, hyperglycemia at admission to an intensive care unit (ICU) is directly correlated with increased mortality or morbidity. Although there was initial enthusiasm for insulin treatment to blood glucose levels below 110 mg/dL in these patients, recent understanding suggests that the potential for hypoglycemic complications make this approach potentially dangerous. More moderate glucose control seems to be more beneficial than the aggressive glucose lowering initially suggested. An important publication has shown that hyperlactatemia accompanying hyperglycemia could be the real culprit in bad outcomes. This suggests that coupling moderate glucose lowering with therapeutic agents which might treat the underlying metabolic disturbances in these conditions may be a better strategy. The key metabolic disturbance in these three conditions seems to be persistent glycolysis as an energy source even in the presence of adequate tissue oxygenation (the Warburg Effect). We look at recent advances in understanding aerobic glycolysis and possibly the action of DPP4 on incretins resulting in insulin dysregulation and suggest key metabolic pathways involved in hyperglycemia regulation

    A retrospective analysis of geriatric trauma patients: venous lactate is a better predictor of mortality than traditional vital signs

    Get PDF
    BACKGROUND: Traditional vital signs (TVS), including systolic blood pressure (SBP), heart rate (HR) and their composite, the shock index, may be poor prognostic indicators in geriatric trauma patients. The purpose of this study is to determine whether lactate predicts mortality better than TVS. METHODS: We studied a large cohort of trauma patients age ≥ 65 years admitted to a level 1 trauma center from 2009-01-01 - 2011-12-31. We defined abnormal TVS as hypotension (SBP < 90 mm Hg) and/or tachycardia (HR > 120 beats/min), an elevated shock index as HR/SBP ≥ 1, an elevated venous lactate as ≥ 2.5 mM, and occult hypoperfusion as elevated lactate with normal TVS. The association between these variables and in-hospital mortality was compared using Chi-square tests and multivariate logistic regression. RESULTS: There were 1987 geriatric trauma patients included, with an overall mortality of 4.23% and an incidence of occult hypoperfusion of 20.03%. After adjustment for GCS, ISS, and advanced age, venous lactate significantly predicted mortality (OR: 2.62, p < 0.001), whereas abnormal TVS (OR: 1.71, p = 0.21) and SI ≥ 1 (OR: 1.18, p = 0.78) did not. Mortality was significantly greater in patients with occult hypoperfusion compared to patients with no sign of circulatory hemodynamic instability (10.67% versus 3.67%, p < 0.001), which continued after adjustment (OR: 2.12, p = 0.01). CONCLUSIONS: Our findings demonstrate that occult hypoperfusion was exceedingly common in geriatric trauma patients, and was associated with a two-fold increased odds of mortality. Venous lactate should be measured for all geriatric trauma patients to improve the identification of hemodynamic instability and optimize resuscitative efforts
    • …
    corecore