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Abstract

The disordered XXZ model is a prototype model of the many-body localization (MBL)
transition. Despite numerous studies of this model, the available numerical evidence of
multifractality of its eigenstates is not very conclusive due to severe finite size effects.
Moreover it is not clear if similarly to the case of single-particle physics, multifractal
properties of the many-body eigenstates are related to anomalous transport, which is
observed in this model. In this work, using a state-of-the-art, massively parallel, numer-
ically exact method, we study systems of up to 24 spins and show that a large fraction
of the delocalized phase flows towards ergodicity in the thermodynamic limit, while a
region immediately preceding the MBL transition appears to be multifractal in this limit.
We discuss the implication of our finding on the mechanism of subdiffusive transport.
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1 Introduction

Metal-insulator transitions are central in condensed matter physics. In most of these transitions
the insulating phase is gapped and the conductivity is mediated by thermal activation across
the gap. It is thus exponentially suppressed at sufficiently low temperatures strictly vanishing
at absolute zero. However in the presence of strong quenched disorder, and in the absence
of interactions, a different kind of metal-insulator transition is possible, which is called the
Anderson localization transition [1]. Across the Anderson transition the spectrum is gapless
and the transition occurs due to the change in the nature of the eigenfunctions 1 [1]. In the
metallic phase the eigenfunctions are ergodic and extended, namely the probability to find a
particle in a certain position is approximately uniform in space. On the other hand, on the
insulating part the eigenfunctions are localized, such that the particle is found in the vicinity
of a certain point. The Anderson transition point is special, since at this point the eigenfunc-
tions are neither ergodic and extended nor localized; they cover a sub-extensive number of
sites, a situation which is called multifractality or nonergodic extended phase [2]. The spatial
structure of the eigenfunctions is directly related to the transport in the system. Ergodic and
extended eigenfunctions yield diffusion, while localized eigenfunctions suppress all transport
all together. At the critical point, the system is known to have subdiffusive transport, with a
fixed dynamical exponent [2].

Almost 15 years ago, it was shown that sufficiently weak interactions between the particles
do not destroy the Anderson insulator, but induce a transition, known as the many-body local-
ization (MBL) transition between an delocalized and localized phases [3] (see [4] for a recent
review). Signatures of MBL were observed in ultracold atomic gases on optical lattices both
in one-dimensional [5–7] and two-dimensional systems [8]. Similarly to the Anderson transi-
tion, the MBL transition was believed to be a finite temperature transition between a diffusive
metal and an insulator, with the crucial difference that in the insulating phase, the conduc-
tivity of a thermodynamically large system is strictly zero even at finite temperature [3, 9].
A number of numerical studies demonstrated later, that for one-dimensional systems with
bounded energy density, transport in the delocalized phase is subdiffusive, and thus conductiv-
ity in the thermodynamic limit vanishes through the entire phase diagram [10–14]. In addition
to the anomalous transport, the delocalized phase shows sublinear growth of entanglement
entropy [13, 15, 16], suppressed spreading of entanglement [17–19], intermediate statistics
of eigenvalue spacing [20] and satisfies only a modified version of the eigenstates thermaliza-
tion hypothesis (ETH) [21] (see [22] for a detailed review of the properties of the delocalized
phase). A phenomenological explanation of the anomalous dynamical properties of the delo-
calized phase, based on rare blocking regions, was provided in Refs. [12,23] (see also recent
review [24]), however a number of predictions of this theory are not entirely consistent with
numerical studies [25–27] and experiments [28] (although there is also supporting numerical
evidence [29]).

Since anomalous relaxation and transport are in many cases related to multifractality of
the eigenstates [30, 31], a natural question to ask is whether a similar relation exists also for
the delocalized phase in systems which exhibit the MBL transition. This direction of thought is
evermore suggestive, since MBL is often viewed as Anderson localization in Fock space, or more
concretely on a complicated high-dimensional graph, where the nodes are Fock states, and the
connectivity between them is mediated by the Hamiltonian (cf. discussion in [32]). Since the
structure of this graph is rather involved it is normally approximated by either the Bethe lattice
[33] or random-regular graphs (RRG, see also review by Imbrie et al. [34]). In addition, the
disorder residing on the nodes of this graph, is highly correlated, a feature which was shown to

1The transition occurs only at three dimensions or higher for tight-binding models without spin-orbit coupling,
and in any dimension for long-range random matrix models as discussed, e.g., in Refs. [2,76,87–90]
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be important for MBL [35,36] compared to the Anderson problem on RRG. The first proposal
of an intermediate nonergodic extended phase sandwiched between the deeply ergodic and
insulating (MBL) phases appeared almost 20 years ago [33]. This phase, colloquially dubbed
by Altshuler a “bad metal” [37], was defined as a phase where the eigenfunctions are extended
over the Hilbert space, but cover only N γ states, where γ < 1 and N is the Hilbert space
dimension. Whether such an intermediate phase, with multifractal eigenfunctions, exists for
the Anderson localization problem on the Bethe lattice or RRGs, is still an ongoing debate.
Large scale studies on random regular graphs (RRGs) suggest that this phase disappears in
the thermodynamic limit [38–42], although there is also no consensus here [38–40, 43–48].
In addition, for weak disorder where all researchers agree that eigenfunctions are ergodic on
RRGs, subdiffusion has been recently observed [49, 50]. Notwithstanding, while Anderson
localization on graphs and MBL are related, it is not clear whether results from RRGs apply
for MBL.

Multifractal properties of eigenstates of systems which exhibit MBL where examined in
a number of studies [51–55]. The outcome is however rather inconclusive, mostly due to
presence of severe finite size effects (mentioned as well in recent papers [56–60]). While
Ref. [51] suggests that there is no intermediate multifractal phase, Refs. [52,61] argue in favor
of a stable intermediate phase. In Refs. [53, 62] multifractal properties of matrix elements
of local operators are studied and found to be multifractal, though Ref. [53] argued that the
intermediate phase shrinks to the MBL critical point in the thermodynamic limit, as it occurs in
the standard Anderson transition. There is therefore a need for a large-scale, numerical study,
which attempts to resolve these discrepancies, and shed light whether multifractality is related
to the anomalous dynamical properties of the delocalized phase. Two multifractal moments of
eigenstates of the disordered XXZ model were studied in Refs. [51, 54], and suggest that the
extended phase is ergodic. While we see similar behavior of the relevant moments, in our work
we find them insufficient to unveil possible nonergodic behavior, which becomes only apparent
at higher moments. Our analysis thus allows us to locate a region in the extended phase which
appears to be nonergodic within the available system sizes.2. Our study also provides, for the
first time, the presentation of the multifractal spectrum. We are able to identify a large portion
of the delocalized phase, where anomalous transport was previously observed, but which is
consistent with a transient multifractality. Our results support the existence of multifractality
in a region which precedes the MBL transition, although we cannot say whether this region
shrinks to the critical point when the system size is increased (cf. [53]).

2 Model

In this work we analyze the properties of the disordered XXZ chain, which is given by the
Hamiltonian,

Ĥ =
Jx y

2

L−1
∑

i=1

�

Ŝ+i Ŝ−i+1 + Ŝ−i Ŝ+i+1

�

+ Jz

L−1
∑

i=1

Ŝz
i Ŝz

i+1 +
L
∑

i=1

hi Ŝ
z
i , (1)

where Ŝz
i , is the z−projection of the spin-1/2 operator, Ŝ±i are the corresponding lowering

and raising operators, Jx y and Jz are inter-spin couplings and hi are random magnetic fields
taken to be uniformly distributed in the interval hi ∈ [−W, W ] . This model conserves the
z−projection of the total spin, and serves as the prototypical model of the MBL transition,
which for infinite temperature occurs for W ∼Wc ÷ 3.7 [51, 63, 64]. For W ¦Wc the system

2This cannot completely rule out strong finite-size effects mentioned in Refs. [56–60], although the presence of
multifractal symmetry for the spectrum of fractal dimensions can be considered as a quite strong argument against
such a scenario.
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is in a MBL phase, with a completely suppressed transport of all globally conserved quantities
[3], while for W ®Wc it exhibits an anomalous transport with a dynamical exponents which
depends on the disorder strength [10–14]. We note in passing that while the value of the
critical disorder Wc determining the MBL transition in the XXZ Heisenberg model is under
debate (cf. W ÷ 3.7 in Refs. [51, 63, 64] vs W ¦ 4.5 in Refs. [59, 60, 65, 66]), since one
of the objectives of this work is to study the connection between anomalous transport and
multifractality to avoid the controversy we limit the disorder strengths in our study to , W ≤ 3,
which according to all studies belong to the delocalized phase.

3 Results

Multifractal analysis requires the calculation of the eigenstates of (1) in a certain energy den-
sity window and for a large number of disorder realizations. Since full diagonalization be-
comes overwhelmingly expensive for system sizes L ¦ 18, and access to large system sizes
is essential, we utilize the shift-invert technique [67], which transforms the spectrum of the
Hamiltonian such that the states of interest are moved to the lowest (highest) energies in the
transformed spectrum and become tractable by Krylov space methods. The most commonly
used spectral transformation for this purpose is (H −σI)−1, where the explicit inversion of
the shifted Hamiltonian can be avoided and replaced by the solution of a set of linear equa-
tions using the Gauss algorithm. We use the massively parallel strumpack library [68,69] to
extract about 50 eigenstates in the middle of the many-body spectrum, where the density of
states is at its maximum. The largest system size we consider is L = 24, which corresponds
to a Hilbert space dimension of N = 2704 156. We repeat this procedure for 100 − 15000
realizations of the disordered magnetic field hi in (1). Overall, the total number of calculated
eigenstate coefficients in the computational basis for each disorder strength and system size is
108 − 1010, which in most cases allows us to reach statistical errors smaller than the symbol
size.

3.1 Distributions of eigenstate coefficients

The high energy states of ergodic systems are well approximated by eigenstates of random-
matrices drawn from a Wigner-Dyson ensemble of matrices [70] which shares the same tem-
poral symmetry as the Hamiltonian. Specifically, eigenstates of real ergodic Hamiltonians,
which are time-inversion invariant, are well described by eigenstates of matrices drawn from
the Gaussian Orthogonal Ensenble (GOE), suggesting that the elements of eigenstates, |β〉,
written in a certain basis |n〉, are almost independent random variables, normally distributed
according to,

PGOE (x ≡ |〈n|β〉|) =

√

√N
2π

e−N x2/2, (2)

where we defined the random variable, x ≡ |〈n|β〉| and N is the Hilbert space dimension.
This assertion, known as Berry’s conjecture [71], was verified numerically in several single-
and many-body ergodic systems (see Ref. [72] for a review). Multifractal eigenstates, on the
contrary, do not satisfy Berry’s conjecture, but are distributed according to,

PN (x)∝
1
|x |

N f (− ln x2/ lnN)−1, (3)

where f (α) is a function called the spectrum of fractal dimensions [2], depending on the only
variable α taken to be α ≡ − ln x2/ lnN (see Section 3.3, and Eq. (14) for the form of f (α)
for GOE eigenstates).
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Figure 1: Normalized probability density of scaled eigenstate coefficients in the com-
putational basis, P

�p
N |〈n|β〉|

�

for disorder strengths W = 1.0, 1.8,2.2 and 2.6 and
system sizes L = 12,16, 20 and 24 (larger systems correspond to darker colors). The
dashed black line represents the normal distribution and errorbars are represented
by shaded areas of the order of the line width.

The distribution of eigenstate coefficients for our model (1) has been studied by two of
us in Ref. [21], and was found to exhibit significant deviations from Berry’s conjecture for
0.4≤W ≤ 1.8, hinting that the underlying eigenstates are multifractal. In this work we study
these distributions in detail, focusing on their flow towards the thermodynamic limit. In both
above cases we focus on eigenstate coefficients in the computational basis, where the basis
states |n〉 are labeled by the eigenvalues of the local Ŝz

i operators.
To give equal weight to small and large values of the eigenstate coefficients, the bins of the

histogram are equally spaced on a logarithmic scale, which we achieve by calculating the his-
togram of α≡ − ln |〈n|β〉|2 / lnN using bins of equal size. The histogram of the wavefunction
coefficients |〈n|β〉| and the corresponding probability density can then be straightforwardly
inferred. In Fig. 1 we show the result of this calculation for a number of disorder strengths
in the extended phase, and a range of system sizes. We compare these distributions with the
normal distribution of GOE, (2), and see a visible departure for all disorder strengths, similarly
to Fig. 2 in Ref. [21]. The departure is especially apparent in the head of the distribution, indi-
cating an excess in small values of the eigenstate elements compared to GOE, and the tails of
the distribution, indicating an excess in large values of the eigenstate elements. The departure
becomes more prominent with the strength of the disorder.

While at first glance the rescaled distributions look collapsed, a more detailed examination
by zooming into various parts of the distribution, shows a noticeable, yet slow, flow towards
the (Gaussian) GOE distribution in most parts of the distribution. In what follows we examine
this flow in detail, by considering the moments of the distribution and its multifractal spectrum
(3).

3.2 Moments of the distributions: inverse participation ratios

In the multifractal analysis one defines the standard inverse participation ratio (IPR) Iβ2 and
its generalizations,

Iβq =
∑

n

|〈β |n〉|2q ∼N−τq , (4)

which measure how many “sites” in the Hilbert space (a site here is a certain basis state |n〉)
the wavefunction occupies [2], the generalized IPR is directly related to the corresponding q
Rényi entropies Sq = ln Iβq /(1− q) [73]. For eigenstates extended over the entire basis, such

as for eigenstates extracted from GOE, x ≡ |〈β |n〉| ∼ N−1/2 giving, Iβq ∼
∑

n N
−q ∼ N−(q−1)
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Figure 2: Odd columns. Finite size τN ,avg
q data (6) as a function of 1/ lnN for various

values of q (0 < q < 3, darker shade of green indicates smaller q) and disorder
strengths W = 1.0, 1.8,2.2 and 2.6. Statistical errors are smaller than symbol size
in all plots. Dashed lines are extrapolation of the data to N → ∞ using a linear
function in 1/ lnN . Even columns. Extrapolated τavg

q as a function of q and various
extrapolation ranges indicated in the legend. Darker colors indicate more weight to
larger system sizes. The dashed black line indicates q−1, which corresponds τavg

q of
the GOE ensemble.

and τq = q−1 for q > −0.5 (the average of Iβq diverges otherwise). Eigenstates which occupy
a finite number of configurations |n〉 which doesn’t scale with the Hilbert space dimension N
will have τq = 0 for q > 0 (and −∞ otherwise). The parameter q is used to tune the weight in
the average from large to small values. Under the assumption that the eigenstate coefficients
are statistically independent, the IPRs are related to the moments of P (x), since one can write,

Iβq =
∑

n

|〈β |n〉|2q =N 1
N

∑

n

|〈β |n〉|2q ≈N



|x |2q�=N
∫

|x |2q P (x)dx . (5)

Using the definition of τq in (4), the normalization of the wavefunction, which gives, Iβq=1 = 1,

and the fact that
∑

n 1=N , which gives Iβq=0 =N one can show that in the limit of N →∞,
τq is a monotonically increasing and concave function of q, namely τ′q > 0 and τ′′q < 0 [2].

To evaluate the τq we calculate the IPRs for each eigenfunction and a range 0≤ q ≤ 4. We

then average Iβq over the nearby in energy eigenstates, as also different disorder realizations,

and obtain
¬

INq
¶

. The finite-size average τavg
q is the given by,

τavg
q (N )≡ −

ln
¬

INq
¶

lnN
. (6)

Since the relation (4) is only expected to hold asymptotically, in Fig. 2 we plot τavg
q (N ) vs

1/ lnN and extrapolate to N → ∞ using a linear function in 1/ lnN 3. The extrapolated

3The motivation of the extrapolation versus 1/ lnN originates from the main subleading contributions to τq (N )
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Figure 3: Similar to Fig. 2, but for τtyp
q , computed from Eq. (7).

values are then plotted as a function of q and compared to the prediction of GOE, τq = q− 1
(dashed black line). While the scaling of τavg

q (N ) with respect to 1/ lnN is mostly linear
indicating a high quality of the extrapolation, for larger values of q a departure from the linear
dependence is apparent, suggesting that the data is still far from being asymptotic. The slight
non-concavity of the extrapolated τavg

q , is a finite size effect and is well within the error bars
of the extrapolation. To quantify the curving of the data, we extrapolate to N →∞ using
a sliding fit window of system sizes, which are shown in the legend. The error bars in the
extrapolated data are estimated using a bootstrap fitting procedure, quantifying the statistical
errors in τavg

q (N ) (which are in all cases smaller than the symbol size). From the extrapolated
data we see that the average, τavg

q ∼ q − 1 for all values of q up to some q∗ (W, L), which
depends on the strength of the disorder. While for weak disorder q∗ spans the entire range
of q considered here, for W → Wc we see that q∗ → 1 . On the other hand we also see that,
q∗ (W, L) increases when higher weight in the extrapolation is given to the larger system sizes,
suggesting that the departure from the q − 1 could be a finite size effect, though we cannot
rule out a saturation of the form limL→∞ q∗ (W, L) = q∗ (W ), which will indicate residual
multifractality at large moments q > q∗ (W ).

We also study the typical τtyp
q (N ), which is defined as

τtyp
q (N )≡ −

ln
¬

INq
¶

typ

lnN
, where

¬

INq
¶

typ
≡ exp

�


ln Iq

��

. (7)

The advantage of this measure is that it suppresses the weight of the outliers. The results of the
same analysis for τtyp

q as described above for τavg
q are presented in Fig. 3, and are qualitatively

identical to the analysis of τavg
q . Quantitatively q∗ is pushed to much larger values 4, almost

entirely eliminating the departure from the q − 1 line for all W < 2.6. This can be viewed as
another indication that q∗ is dominated by outliers and is likely to flow to infinity for larger
system sizes.

from the prefactor in (4).
4as in the GOE case at finite size, where q∗ ∼ lnN , see [75] for details.
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Figure 4: Similar to Fig. 3 but for W = 1.0,2.2, 2.6 and 3.0 for q < 0. The dashed
black lines correspond to the expected behavior of τtyp

q for the GOE case, 3q for
q < −0.5 and (q− 1) otherwise. See the Eq. (9) for details.

Another advantage ofτtyp
q is that unlikeτavg

q it doesn’t diverge for q < −0.5, and thus allows
to study the behavior of the small values of the eigenstate coefficients. We recall that these
values are of particular interest given their abundance compared to the Gaussian distribution
(see Fig. 1) . In Fig. 4 we repeat the analysis done in Fig. 3 for q < 0 (for technical reasons
we use a different set of data here, which includes less samples).

We estimate the value of τtyp
q for GOE eigenstates based on the behavior of f GOE

avg (α) for
α > 1, which can be calculated analytically based on (2) and (3),

f GOE
av (α) =

¨

−∞ α < 1

(3−α)/2 α > 1
. (8)

Since the typical ftyp (α) is determined by histogram counts growing with the system size [2],
it coincides with favg (α) for favg (α)≥ 0 and tends to −∞ (zero counts) otherwise. Thus, we
can evaluate τtyp

q from f GOE
av (α) using a truncated Legendre transform [2],

τtyp
q = sup

α

f GOE
av (α)>0

�

qα− f GOE
av (α)

�

=

¨

q− 1 q > −0.5

3q q ≤ −0.5
, (9)

which is designated in Fig. 4 by the dashed black lines. We note that similarly to q > 0, τtyp
q

for q < 0 appears to flow to the predictions of GOE.
This conclusion is in apparent contradiction to the behavior of the distributions in Fig. 1,

where an excess of zeros of the eigenstates compared to GOE prediction is clearly visible for
W ∼ 1, and does not appear to vanish in the N →∞. The discrepancy must follow from the
prefactor in the definition of τtyp

q ,
¬

I N
q

¶

typ
= A(N )N−τ

typ
q , which includes a slowly varying

prefactor (the variation is at most of the order of lnN ). To test this assertion numerically, we
compute the ratio,

¬

I N
q

¶

typ
/
¬

IN ,GOE
q

¶

typ
for a number of q-s and disorder strengths. Since to
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Figure 5: Odd columns. Finite size data of the ratio,
¬

I N
q

¶

typ
/
¬

IN ,GOE
q

¶

typ
vs 1/ lnN

for a number of q-s and disorder strength W (see legend). Dashed lines are extrap-
olation to N →∞. Even columns. The same ratio

¬

I N
q

¶

typ
/
¬

IN ,GOE
q

¶

typ
, but as a

function of q. Dashed black line indicates GOE limit.

the best of our knowledge there are no analytical relations for
¬

IN ,GOE
q

¶

typ
5 we compute it

numerically by drawing 100 random eigenstates from a Gaussian probability distribution in
Eq. (2), while fixing the norm of the eigenstate. This procedure is very efficient and allows
us to study the same Hilbert space dimensions as we do for the XXZ model, at a negligible
computational cost. The results of the evaluation of

¬

I N
q

¶

typ
/
¬

IN ,GOE
q

¶

typ
can be seen in Fig. 5.

For W < 1 we indeed see that for the system sizes we have the ratio flows away from 1. We
strongly suspect that this apparent divergence from GOE, is a finite size effect, which has to
do with the proximity of an integrable point (for W = 0 the XXZ model is integrable). We
leave the examination of this effect to future studies. For W > 1 we see an apparent flow
towards 1, with clearest evidence for W = 2.2. For W = 2.6 and 3.0, the finite size behavior
is non-monotonic (highlighting the importance of the use of large system sizes), and appears
to flow towards 1, though for these disorder strengths it is less apparent.

To summarize this section, we have seen that while a naïve examination of the distributions
of the eigenstates elements in Fig. 1, shows apparent convergence to a non-Gaussian, and thus
multifractal distribution, a more detailed analysis looking on the moments of the distribution,
shows a slow but clear flow towards the predictions of GOE, in τtyp

q ,τavg
q and even directly

in the finite size generalized IPRs compared to thier GOE values
¬

I N
q

¶

typ
/
¬

IN ,GOE
q

¶

typ
. In

the next section we will complement this analysis, by examining an additional multifractal
measure — the multifractal spectrum.
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Figure 6: Odd columns. f (α,N ) vs 1/ lnN for different α values (see leg-
end). Dashed colored lines correspond to an extrapolation to N → ∞, and
the stars on the y-axis correspond to the infinite size GOE prediction. Even
columns. The finite size multifractal spectrum, f (α,N ) calculated using Eq. (15)
for L = 12,16, 20,24 (darker colors, correspond to larger system sizes) and disorder
strengths W = 1.0,1.8, 2.2,2.6, the width of the lines correspond to statistical errors.
Red dashed line corresponds to the infinite size GOE prediction, fGOE (α) according
to (14), and black dashed lines show the upper bounds on f (α) according to (13).
The error bars are represented by filled areas of the order of the line width.

3.3 Multifractal spectrum

In this section we analyze the multifractal spectrum, f (α), of the eigenstates of (1), which
appeared in (3), but we repeat it here for convenience,

PN (x)∝
1
|x |

N f (− ln x2/ lnN)−1, (10)

with α ≡ − ln x2/ lnN and x ≡ |〈n|β〉|, where |n〉 is a basis state, and |β〉 are eigen-
states of (1) [2]. The multifractal spectrum, f (α) is the fractal dimension of the set
x ∈

�

N−α/2,N−(α+dα)/2
�

, namely the probability for x to be in this interval is given by,

p (α)∼ (lnN )N−(1− f (α)). (11)

Using (10) and the relation (5) to Iq one can see that,

τq = inf
α
[qα− f (α)] , (12)

namely in the limit N → ∞, τq and f (α) are related via a Legendre transform [2]. Here
inf is an infimum. We note however that while τq is a concave function the definition (10)
above allows for f (α) to be non-concave a feature which we will utilize in our analysis below.

5Unlike for the average
¬

IN ,GOE
q

¶

, see, e.g., [91].
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Similarly to the restrictions on τq, described above Eq. (5), from normalization of the prob-
ability distribution,

∫

PN (x)dx = 1 and the wavefunction
∫

x2PN (x)dx = N−1 in the limit
N →∞ one can derive, that

f (α)≤min (1,α) . (13)

For the Gaussian distribution of GOE eigenstates (2), using the definition (8), one can obtain
the finite size correction,

fGOE (α,N ) = 1+
ln (P (α)/ (A lnN ))

lnN
= 1+

1−α
2
−

N 1−α

2 lnN
−

ln A
lnN

, (14)

which in the limit N →∞ gives the already mentioned result (8). Here A is a normalization
constant being a slow (at most logarithmic) function of N . Note that this multifractal spec-
trum differs from fGOE (1) = 1, fGOE (α 6= 1) → −∞ in Ref. [2] because the latter is written
for wavefunction envelopes, while the raw numerical eigenstates contain de Broglie-like oscil-
lations corresponding to the increased statistics of zeros (large values of α > 1). While there
are methods to remove these superfluous zeros (see, e.g., [45, 46]), since the statistics of the
zeros does not affect q > 0 moments of the eigenfunctions we don’t consider such methods in
this work.

To obtain the finite size multifractal spectrum we numerically compute a histogram of α
with 0 ≤ α ≤ 4 (we used 50, 100, and 200 bins, and verified that our results don’t change
with respect to the bin number, not shown), then using (11) yields,

f (α,N ) = 1+
ln (p (α)/ lnN )

lnN
, (15)

which is presented in the even columns of Fig. 6, for various disorder strengths 1 ≤W ≤ 2.6.
Here we assumed A to be a constant (not a logarithmic function of N ) like in the GOE case
as we focus on the small disorder amplitudes. In the odd columns of Fig. 6 we extrapolate
the data to N →∞, with the same procedure used in several random matrix models (see,
e.g., [45,46]). For sufficiently strong disorder or α sufficiently far from 1, our finite size data
shows a nonlinear behavior in 1/ lnN (like in GOE case (8)) indicating the importance of
using large system sizes in the the determination of the asymptotic behavior. Even with the
state-of-the-art system sizes we use here, the extrapolation procedure is not justified due to
nonlinearity of the data for some values of α. Nevertheless, for W < 2, the extrapolation
works fairly well, and similarly to the moments analysis in the previous section, supports a
flow towards the predictions of GOE. The extrapolation is not entirely satisfactory for W = 2.2
and 2.6, thus we cannot rule out multifractal behavior in this case.

We also note that in the calculation of the histograms ofα, the sampling for our system sizes
starts yielding zero counts (for all used bin sizes) for α¦ 2.5 and the majority of eigenvectors.
In this interesting regime (corresponding to the excess of zeros in the wavefunction histogram,
Fig. 1), the (low probability) contribution to the histogram seems to stem from the distribution
over disorder realizations, rather than from representative eigenstates. This leads to large
fluctuations, also visible in the errorbars (shaded area).

The finite size behavior of the multifractal spectrum, f (α,N ) , is also useful to understand
the deviation from the (q− 1) GOE line for both τavg

q and τtyp
q , which occurs for some value

q∗ (W, L) (see Figs. 2 and 3). By looking on the direction of the flow of f (α,N ) with the
system size (see Fig. 6), for all W ≤ 2.2 and α close to the maximum of f (α,N ), which
corresponds to q < q∗, the f (α,N ) increases with N . For small α on the other hand, which
corresponds to q > q∗, the spectrum f (α,N ) decreases with N . Moreover the crossing points
of f (α,N ) at two adjacent N values flow towards α = 1 with increasing N . For W = 2.6
the situation is drastically different, since there is no downward finite-size flow at small α, but
instead f (α,N ) appears to saturate. This is also visible in the extrapolation curves for small
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Figure 7: Upper row. The finite size multifractal spectrum f (α,N ) for small values of
α and L = 12, 16,20,24 (darker colors, correspond to larger system sizes). Dashed
black lines indicate the upper bounds on f (α) according to (13). The insets show
f (α,N ) (solid black lines) for the maximal available size (L = 24) together with its
multifractally symmetric counterpart according to Eq. (16) (dashed red lines). Lower
row. Same as the upper row, but for the tilted multifractal spectrum, f (α,N )− qα,
and q = 1.5.

α= 0.1 in Fig. 6. To emphasize this point in Fig. 7 we plot f (α)−qα, the supremum of which
corresponds to −τq (see (9) for example). For W = 2.6 the left local maximum at α' 0.1 does
not appear to flow with system size, while the right local maximum at α ' α0 drifts upward.
Nevertheless this upward flow is bounded from above by the normalization conditions (13)
(shown by black dashed lines in the figure) and thus the right local maximum at α' α0 cannot
overcome the one at α ' 0.1 even in thermodynamic limit. While it is possible that there is a
very slow downward flow of the left local maximum, which will eventually restore GOE, we
do not see it within the available system sizes. Further support for possible multifractality at
W = 2.6 can be obtained by examining the well-known symmetry of multifractal spectrum,
which can be analytically derived for wavefunction envelopes in multifractal states of various
models [2],

f (α) = f (2−α) +α− 1. (16)

While this symmetry is not necessarily satisfied when multifractality is present (for example it
fails in localized phases and in some extended phases with Poisson statistics), it serves as an
additional indication of multifractality.

In the insets of Fig. 7 we test this symmetry for the maximal available system size L = 24.
To suppress the effects of zeros of the eigenstates we only examine the symmetry in the regime
where the tail of f (α) is significantly above its ergodic value (3−α)/2 (see Eq. (8)), which
for our data occurs for W ≥ 2.6 (see Fig. 6). In this range of disorder strengths the multifractal
symmetry (16) is satisfied (insets of Fig. 7), while in the complementary range, W ≤ 2.2 the
symmetry doesn’t apply. This indicates a possible multifractal phase for W > 2.2.
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4 Summary and discussion

In this work we have conducted a detailed large-scale numerical study of multifractal proper-
ties of eigenstates on the delocalized side of the many-body localization transition (MBL). This
phase is known to have a number of anomalous dynamical features, such as subdiffusive trans-
port, sublinear entanglement entropy growth and suppressed spreading of information [22].
For the single-particle case, suppressed relaxation and dynamics are often associated with spa-
tial sparseness of the underlying eigenstates [30, 31]. A natural question to ask is whether a
similar relation exists also in the many-body case, namely if sparseness of the eigenstates in
Hilbert space implies slow relaxation and suppressed transport of local observables. In this
work we answer this question in the negative, by identifying a large fraction of the delocalized
phase which is consistent with ergodicity, while still showing a clear signature of subdiffusion
and slow relaxation in both numerical and experimental data. We reach this conclusion by
a careful analysis of the finite size flows of eigenstate coefficient distributions, moments of
these distributions and their spectrum of multifractal dimensions. Our analysis focuses on the
computational basis, where the basis states are labeled by the eigenvalues of the local Ŝz

i op-
erators. This is the natural basis for the XXZ chain in the context of MBL since it is compatible
with the disorder and is naturally linked to the hopping problem in Hilbert space. To the best
of our knowledge, the multifractal spectrum of the disordered XXZ chain has not been studied
before due to severe finite-size behavior and non-monotonic behavior (see Figs. 5 and 6 for
example), which hindered reliable extrapolation to the thermodynamic limit.

In this work we focus on standard multifractal probes, namely, on the spectrum of fractal
dimensions f (α) and on its Legendre transform, the critical exponent τq of the generalized
IPR. We distinguish between mean and typical averaging of τq over different eigenstates and
disorder strengths. All the measures we study provide a coherent picture of a steady flow
towards the predictions of GOE for disorder strengths W ® 2.6. The average τq deviates from
the ergodic limit q− 1 only in the atypical region, f (α) < 0, which corresponds to bin counts
decreasing with the system size in the wavefunction histogram. At the same time typical τq
and multifractal spectrum f (α) demonstrate a district flow towards GOE values. The typical τq
show a slight non-concavity, in this disorder interval, due to sub-leading non-linear finite-size
effects similarly to the behavior in Anderson localization [2, 74], however this non-concavity
is within the error bars and can thus can be safely ignored. A slight discrepancy compared
to the GOE prediction, is observed for W < 1, as an excess of small values of the eigenstate
coefficients compared to GOE. Although it is consistent with a so-called weak ergodic phase,
where the wavefunction occupies a finite, but tiny fraction of the Hilbert space, observed in
several single-particle and many-body systems [75–77], we argue that this discrepancy is a
result of proximity to an integrable point at W = 0, and should — if this is indeed the case
— disappear either in the thermodynamic limit, or if integrability is broken. We leave the
verification of this prediction to a future study.

For larger disorder strengths, our analysis becomes unreliable, due to slowing down of
finite-size flows. While we cannot rule out a slow residual flow to GOE (which would provide
an alternative explanation in line with strong finite-size effects [56–60]), we don’t observe it
within our range of accessible system sizes . At this disorder strength, both average and typical
τq deviate from their ergodic limit q−1 at q ¦ 1, which is consistent with the saturation of the
down-flow of f (α) at α ® 1. Moreover, for W = 2.6 the multifractal spectrum f (α) perfectly
satisfies one of its basic symmetries, which would be consistent with multifractality of the
eigenstates in this region. Given the immense numerical cost of our calculations, we could only
compute the spectrum in a limited range of disorder strengths across the delocalized phase.
Combined with the slow finite size flows at stronger disorder, we cannot determine whether
the region consistent with multifractality shrinks to the critical point when the system size is
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increased, as was claimed in Ref. [53]. It would be interesting to study this important question
in more detail in the future.

One of the central outcomes of our study suggests that the previously observed anomalous
dynamics is not related to multifractality of many-body eigenstates. However ,since multi-
fractal features are generically basis dependent, one can wonder whether the outcome of our
study changes with the change of the basis. While it is difficult to predict the effect of a ba-
sis rotation without performing actual calculations, it is clear that for GOE eigenstates the
multifractal features (i.e. non-fractal in this case) do not depend on the basis, since the GOE
distribution is invariant under orthogonal transformation [70]. However, this is only true for
almost all bases (for example the eigenstate basis is clearly not a good basis to study mul-
tifractality). In contrast, for truly multifractal states both in single-particle and many-body
systems multifractal and localization properties are drastically basis-dependent. In the Ander-
son localization community the spatial basis presents a natural choice where the localization
transition also show changes in the level statistics 6, but there is no such obvious choice for the
many-body case. One good candidate for such a basis, which can be directly tied to relaxation
of local observables, is the family of bases generated by locally exciting the eigenstates of the
system [53].
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A Matrix elements

In this appendix, we turn our attention to the analysis of the distributions of matrix elements
of the local magnetization Ŝz

i in the eigenbasis of the Hamiltonian. Similarly to our analysis
of the eigenstates coefficients in the main text, for each disorder realization we consider 50
eigenstates |α〉 of the Hamiltonian Ĥ with an eigenvalue Eα closest to middle of the many-body
spectrum (Emax − Emin)/2. These eigenstates correspond roughly to infinite temperature. We
note however, that since we study the microcanonical ensemble with Stot

z = 0 here, where
Tr Sz=0H 6= 0, in each disorder realization there is a slightly different “effective temperature”,
which we correct by subtracting the mean of the diagonal matrix elements (computed over the
extracted eigenstates) for each disorder realization (cf. discussion in Ref. [82] and in particular
Appendix B therein).

We complement our previous work in Refs. [21,83], by calculating the distribution of the
matrix elements 〈α| Ŝz

i |β〉 of the local Ŝz
i in the eigenbasis {|α〉} of the Hamiltonian, with a

massively improved statistics and one additional system size (L = 24). We also add logarithmic
binning of the histograms, a direct distribution of diagonal matrix elements rather than their
differences as well as a direct comparison of diagonal α = β and offdiagonal α 6= β matrix

6Recent developments show that in correlated models the spectrum properties are related to localization in
several bases (cf. Ref. [76]).
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|〈α|Ŝzi |α〉|
10−4

10−3

10−2

10−1

100

101

102

103

p
(|
〈α
|Ŝ
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|〈α|Ŝzi |β〉|

10−4

10−2

100

102

p
(|
〈α
|Ŝ
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Figure 8: Distribution of diagonal (top) and offdiagonal (bottom) matrix elements
of the local Ŝz

i operator as a function of disorder strength W in the eigenbasis {|α〉}
of the Hamiltonian. For each disorder realization, 50 eigenstates closest to middle
of the many-body spectrum. For each system size and disorder strength 102 . . . 104

disorder realizations are included, as well as all positions i in the chain. Note that for
the diagonal matrix elements 〈α| Ŝz

i |α〉 the distribution for each disorder realization
has a (slightly) nonzero mean, which we subtracted here (cf. discussion in Ref. [82]).
The red dashed histograms in the bottom row for W = 1.0 and W = 1.8 correspond
to the (rescaled) distribution of the diagonal matrix elements

p
2p
�

〈α| Ŝz
i |α〉/

p
2
�

for comparison. For stronger disorder, the distributions of diagonal and offdiagonal
matrix elements are so strikingly different that we do not show them in the same
panel here.

elements distributions.
Fig. 8 shows the results for the logarithmically binned probability density of diago-

nal
�

�〈α| Ŝz
i |α〉

�

� and offdiagonal
�

�〈α| Ŝz
i |α〉

�

� | matrix elements of Ŝz
i for disorder strengths

W = 1.0, 1.8, 2.2, 2.6, which are well on the delocalized side of the phase diagram, for system
sizes L = 10, 12 . . . , 22,24. The logarithmic binning highlights the maximum of the distribu-
tions, where the matrix elements are closeset to zero. At weak disorder W ® 1.0 we note that
both diagonal and offdiagonal matrix elements assume a distribution very close to Gaussian
as predicted by ETH [84]. Furthermore, the prediction from random matrix theory that dis-
tributions of diagonal and offdiagonal matrix elements should be directly related [85, 86] is
verified to very high precision (dashed red lines in the lower panels of Fig. 8 are diagonal dis-
tributions for L = 22, 24 (renormalized by

p
2 in order to take account of convolution of two

gaussian distributions) in comparison to offdiagonal distributions shown in color). It is clear
however (as was shown in Ref. [86]), that for stronger disorder W ¦ 1.8, this correspondence
is violated.

For the diagonal matrix elements the shape of the maximum appears to be Gaussian (flat
on a logarithmic scale), however the tails of the distribution deviate from Gaussian distribu-
tions at disorder strengths W ¦ 1.0. The double logarithmic scale reveals a long straight tail,
particularly well developed for W = 1.8 and W = 2.2, which seems to be consistent with a
power law tail over more then one decade.For the offdiagonal matrix elements the tail seems

15

https://scipost.org
https://scipost.org/SciPostPhysCore.2.2.006


SciPost Phys. Core 2, 006 (2020)

to decay faster than a power law. In contrast to the diagonal matrix elements, there is a sig-
nificant excess weight at small values of the offdiagonal matrix elements

�

�〈α| Ŝz
i |β〉

�

�, which
seems to scale to zero for W = 2.2 but survives up to at least L = 24 for W = 2.6. The scal-
ing of the matrix element distribution variance inversely with Hilbert space dimension is well
visible at weak disorder W = 1.0 in the (almost) equidistant distributions for both diagonal
and offdiagonal matrix elements and was analyzed in detail in Refs. [21, 83]. Increasingly
strong deviations from this scaling are observed at stronger disorder, which were connected
to subdiffusive transport [21].
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[14] M. Žnidarič, A. Scardicchio and V. Kerala Varma, Diffusive and subdiffusive spin trans-
port in the ergodic phase of a many-body localizable system, Phys. Rev. Lett. 117, 040601
(2016), doi:10.1103/PhysRevLett.117.040601.

[15] R. Vosk, D. A. Huse and E. Altman, Theory of the many-body localization transition in one-
dimensional systems, Phys. Rev. X 5, 031032 (2015), doi:10.1103/PhysRevX.5.031032.

[16] A. C. Potter, R. Vasseur and S. A. Parameswaran, Universal properties of many-body delo-
calization transitions, Phys. Rev. X 5, 031033 (2015), doi:10.1103/PhysRevX.5.031033.

[17] D. J. Luitz and Y. Bar Lev, Information propagation in isolated quantum systems, Phys. Rev.
B 96, 020406 (2017), doi:10.1103/PhysRevB.96.020406.

[18] T. L. M. Lezama, S. Bera and J. H. Bardarson, Apparent slow dynamics in the ergodic phase
of a driven many-body localized system without extensive conserved quantities, Phys. Rev.
B 99, 161106 (2019), doi:10.1103/PhysRevB.99.161106.

[19] T. L. M. Lezama and D. J. Luitz, Power-law entanglement growth from typical product
states, Phys. Rev. Research 1, 033067 (2019), doi:10.1103/PhysRevResearch.1.033067.

[20] M. Serbyn and J. E. Moore, Spectral statistics across the many-body localization transition,
Phys. Rev. B 93, 041424 (2016), doi:10.1103/PhysRevB.93.041424.

[21] D. J. Luitz and Y. Bar Lev, Anomalous thermalization in ergodic systems, Phys. Rev. Lett.
117, 170404 (2016), doi:10.1103/PhysRevLett.117.170404.

[22] D. J. Luitz and Y. Bar Lev, The ergodic side of the many-body localization transition, Ann.
Phys. 529, 1600350 (2017), doi:10.1002/andp.201600350.

[23] S. Gopalakrishnan, K. Agarwal, E. A. Demler, D. A. Huse and M. Knap, Griffiths effects
and slow dynamics in nearly many-body localized systems, Phys. Rev. B 93, 134206 (2016),
doi:10.1103/PhysRevB.93.134206.

[24] K. Agarwal, E. Altman, E. Demler, S. Gopalakrishnan, D. A. Huse and M. Knap, Rare-
region effects and dynamics near the many-body localization transition, Ann. Phys. 529,
1600326 (2017), doi:10.1002/andp.201600326.

[25] Y. Bar Lev and D. R. Reichman, Slow dynamics in a two-dimensional Anderson-Hubbard
model, Europhys. Lett. 113, 46001 (2016), doi:10.1209/0295-5075/113/46001.

[26] Y. Bar Lev, D. M. Kennes, C. Klöckner, D. R. Reichman and C. Karrasch, Transport in
quasiperiodic interacting systems: From superdiffusion to subdiffusion, Europhys. Lett. 119,
37003 (2017), doi:10.1209/0295-5075/119/37003.

[27] N. Macé, N. Laflorencie and F. Alet, Many-body localization in a quasiperiodic Fibonacci
chain, SciPost Phys. 6, 050 (2019), doi:10.21468/SciPostPhys.6.4.050.

[28] H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman, U. Schneider and I.
Bloch, Observation of slow dynamics near the many-body localization transition
in one-dimensional quasiperiodic systems, Phys. Rev. Lett. 119, 260401 (2017),
doi:10.1103/PhysRevLett.119.260401.

17

https://scipost.org
https://scipost.org/SciPostPhysCore.2.2.006
http://dx.doi.org/10.1103/PhysRevB.93.060201
http://dx.doi.org/10.1103/PhysRevLett.117.040601
http://dx.doi.org/10.1103/PhysRevX.5.031032
http://dx.doi.org/10.1103/PhysRevX.5.031033
http://dx.doi.org/10.1103/PhysRevB.96.020406
http://dx.doi.org/10.1103/PhysRevB.99.161106
http://dx.doi.org/10.1103/PhysRevResearch.1.033067
http://dx.doi.org/10.1103/PhysRevB.93.041424
http://dx.doi.org/10.1103/PhysRevLett.117.170404
http://dx.doi.org/10.1002/andp.201600350
http://dx.doi.org/10.1103/PhysRevB.93.134206
http://dx.doi.org/10.1002/andp.201600326
http://dx.doi.org/10.1209/0295-5075/113/46001
http://dx.doi.org/10.1209/0295-5075/119/37003
http://dx.doi.org/10.21468/SciPostPhys.6.4.050
http://dx.doi.org/10.1103/PhysRevLett.119.260401


SciPost Phys. Core 2, 006 (2020)

[29] M. Žnidarič and M. Ljubotina, Interaction instability of localization in quasiperiodic sys-
tems, Proc. Natl. Acad. Sci. USA 115, 4595 (2018), doi:10.1073/pnas.1800589115.

[30] R. Ketzmerick, K. Kruse, S. Kraut and T. Geisel, What determines the spreading of a wave
packet?, Phys. Rev. Lett. 79, 1959 (1997), doi:10.1103/PhysRevLett.79.1959.

[31] T. Ohtsuki and T. Kawarabayashi, Anomalous diffusion at the Anderson transitions, J. Phys.
Soc. Jpn. 66, 314 (1997), doi:10.1143/JPSJ.66.314.

[32] F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, C.
R. Phys. 19, 498 (2018), doi:10.1016/j.crhy.2018.03.003.

[33] B. L. Altshuler, Y. Gefen, A. Kamenev and L. S. Levitov, Quasiparticle lifetime in
a finite system: A nonperturbative approach, Phys. Rev. Lett. 78, 2803 (1997),
doi:10.1103/PhysRevLett.78.2803.

[34] J. Z. Imbrie, V. Ros and A. Scardicchio, Local integrals of motion in many-body localized
systems, Ann. Phys 529, 1600278 (2017), doi:10.1002/andp.201600278.

[35] S. Ghosh, A. Acharya, S. Sahu and S. Mukerjee, Many-body localization
due to correlated disorder in Fock space, Phys. Rev. B 99, 165131 (2019),
doi:10.1103/PhysRevB.99.165131.

[36] S. Roy and D. E. Logan, Fock-space correlations and the origins of many-body localization,
Phys. Rev. B 101, 134202 (2020), doi:10.1103/PhysRevB.101.134202.

[37] B. L. Altshuler, Many-body localization, Columbia University (2010),
https://www.lancaster.ac.uk/users/esqn/windsor10/lectures/Altshuler.pdf.

[38] K. S. Tikhonov, A. D. Mirlin and M. A. Skvortsov, Anderson localization
and ergodicity on random regular graphs, Phys. Rev. B 94, 220203 (2016),
doi:10.1103/PhysRevB.94.220203.

[39] K. S. Tikhonov and A. D. Mirlin, Fractality of wave functions on a Cayley tree: Difference
between tree and locally treelike graph without boundary, Phys. Rev. B 94, 184203 (2016),
doi:10.1103/PhysRevB.94.184203.

[40] I. García-Mata, O. Giraud, B. Georgeot, J. Martin, R. Dubertrand and G. Lemarié, Scaling
theory of the Anderson transition in random graphs: Ergodicity and universality, Phys. Rev.
Lett. 118, 166801 (2017), doi:10.1103/PhysRevLett.118.166801.

[41] G. Biroli and M. Tarzia, Delocalization and ergodicity of the Anderson model on Bethe
lattices (2018), arXiv:1810.07545.

[42] K. S. Tikhonov and A. D. Mirlin, Statistics of eigenstates near the localiza-
tion transition on random regular graphs, Phys. Rev. B 99, 024202 (2019),
doi:10.1103/PhysRevB.99.024202.

[43] G. Biroli, A. C. Ribeiro-Teixeira and M. Tarzia, Difference between level statistics, ergodicity
and localization transitions on the Bethe lattice (2012), arXiv:1211.7334.

[44] A. De Luca, A. Scardicchio, V. E. Kravtsov and B. L. Altshuler, Support set of random
wave-functions on the Bethe lattice (2014), arXiv:1401.0019.

[45] A. De Luca, B. L. Altshuler, V. E. Kravtsov and A. Scardicchio, Anderson localization on
the Bethe lattice: Nonergodicity of extended states, Phys. Rev. Lett. 113, 046806 (2014),
doi:10.1103/PhysRevLett.113.046806.

18

https://scipost.org
https://scipost.org/SciPostPhysCore.2.2.006
http://dx.doi.org/10.1073/pnas.1800589115
http://dx.doi.org/10.1103/PhysRevLett.79.1959
http://dx.doi.org/10.1143/JPSJ.66.314
http://dx.doi.org/10.1016/j.crhy.2018.03.003
http://dx.doi.org/10.1103/PhysRevLett.78.2803
http://dx.doi.org/10.1002/andp.201600278
http://dx.doi.org/10.1103/PhysRevB.99.165131
http://dx.doi.org/10.1103/PhysRevB.101.134202
https://www.lancaster.ac.uk/users/esqn/windsor10/lectures/Altshuler.pdf
http://dx.doi.org/10.1103/PhysRevB.94.220203
http://dx.doi.org/10.1103/PhysRevB.94.184203
http://dx.doi.org/10.1103/PhysRevLett.118.166801
https://arxiv.org/abs/1810.07545
http://dx.doi.org/10.1103/PhysRevB.99.024202
https://arxiv.org/abs/1211.7334
https://arxiv.org/abs/1401.0019
http://dx.doi.org/10.1103/PhysRevLett.113.046806


SciPost Phys. Core 2, 006 (2020)

[46] V. E. Kravtsov, I. M. Khaymovich, E. Cuevas and M. Amini, A random matrix model with
localization and ergodic transitions, New J. Phys. 17, 122002 (2015), doi:10.1088/1367-
2630/17/12/122002.

[47] D. Facoetti, P. Vivo and G. Biroli, From non-ergodic eigenvectors to local resolvent
statistics and back: A random matrix perspective, Europhys. Lett. 115, 47003 (2016),
doi:10.1209/0295-5075/115/47003.

[48] B. L. Altshuler, E. Cuevas, L. B. Ioffe and V. E. Kravtsov, Nonergodic phases in
strongly disordered random regular graphs, Phys. Rev. Lett. 117, 156601 (2016),
doi:10.1103/PhysRevLett.117.156601.

[49] S. Bera, G. De Tomasi, I. M. Khaymovich and A. Scardicchio, Return probability for
the Anderson model on the random regular graph, Phys. Rev. B 98, 134205 (2018),
doi:10.1103/PhysRevB.98.134205.

[50] G. De Tomasi, S. Bera, A. Scardicchio and I. M. Khaymovich, Subdiffusion in the
Anderson model on the random regular graph, Phys. Rev. B 101, 100201 (2020),
doi:10.1103/PhysRevB.101.100201.

[51] D. J. Luitz, N. Laflorencie and F. Alet, Many-body localization edge in the random-field
Heisenberg chain, Phys. Rev. B 91, 081103 (2015), doi:10.1103/PhysRevB.91.081103.

[52] E. J. Torres-Herrera and L. F. Santos, Extended nonergodic states in disordered many-body
quantum systems, Ann. Phys. 529, 1600284 (2017), doi:10.1002/andp.201600284.
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