744 research outputs found

    Phonon-induced linewidths of graphene electronic states

    Full text link
    The linewidths of the electronic bands originating from the electron-phonon coupling in graphene are analyzed based on model tight-binding calculations and experimental angle-resolved photoemission spectroscopy (ARPES) data. Our calculations confirm the prediction that the high-energy optical phonons provide the most essential contribution to the phonon-induced linewidth of the two upper occupied σ\sigma bands near the Γˉ\bar{\Gamma}-point. For larger binding energies of these bands, as well as for the π\pi band, we find evidence for a substantial lifetime broadening from interband scattering πσ\pi \rightarrow \sigma and σπ\sigma \rightarrow \pi, respectively, driven by the out-of-plane ZA acoustic phonons. The essential features of the calculated σ\sigma band linewidths are in agreement with recent published ARPES data [F. Mazzola et al., Phys.~Rev.~B. 95, 075430 (2017)] and of the π\pi band linewidth with ARPES data presented here.Comment: 7 pages, 4 figure

    Simultaneous conduction and valence band quantisation in ultra-shallow, high density doping profiles in semiconductors

    Full text link
    We demonstrate simultaneous quantisation of conduction band (CB) and valence band (VB) states in silicon using ultra-shallow, high density, phosphorus doping profiles (so-called Si:P δ\delta-layers). We show that, in addition to the well known quantisation of CB states within the dopant plane, the confinement of VB-derived states between the sub-surface P dopant layer and the Si surface gives rise to a simultaneous quantisation of VB states in this narrow region. We also show that the VB quantisation can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantised VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantised CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantised CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.Comment: 5 pages, 2 figures and supplementary materia

    Sudden death and sudden birth of entanglement in common structured reservoirs

    Get PDF
    We study the exact entanglement dynamics of two qubits in a common structured reservoir. We demonstrate that, for certain classes of entangled states, entanglement sudden death occurs, while for certain initially factorized states, entanglement sudden birth takes place. The backaction of the non-Markovian reservoir is responsible for revivals of entanglement after sudden death has occurred, and also for periods of disentanglement following entanglement sudden birth.Comment: 4 pages, 2 figure

    Conditions for the freezing phenomena of geometric measure of quantum discord for arbitrary two-qubit X states under non-dissipative dephasing noises

    Full text link
    We study the dynamics of geometric measure of quantum discord (GMQD) under the influences of two local phase damping noises. Consider the two qubits initially in arbitrary X-states, we find the necessary and sufficient conditions for which GMQD is unaffected for a finite period. It is further shown that such results also hold for the non-Markovian dephasing process.Comment: 4 pages, 2 figure

    A Tonnetz Model for pentachords

    Get PDF
    This article deals with the construction of surfaces that are suitable for representing pentachords or 5-pitch segments that are in the same T/IT/I class. It is a generalization of the well known \"Ottingen-Riemann torus for triads of neo-Riemannian theories. Two pentachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case.Comment: 27 pages, 12 figure

    From music to mathematics and backwards: introducing algebra, topology and category theory into computational musicology

    Get PDF
    International audienceDespite a long historical relationship between mathematics and music, the interest of mathematicians is a recent phenomenon. In contrast to statistical methods and signal-based approaches currently employed in MIR (Music Information Research), the research project described in this paper stresses the necessity of introducing a structural multidisciplinary approach into computational musicology making use of advanced mathematics. It is based on the interplay between three main mathematical disciplines: algebra, topology and category theory. It therefore opens promising perspectives on important prevailing challenges, such as the automatic classification of musical styles or the solution of open mathematical conjectures, asking for new collaborations between mathematicians, computer scientists, musicologists, and composers. Music can in fact occupy a strategic place in the development of mathematics since music-theoretical constructions can be used to solve open mathematical problems. The SMIR project also differs from traditional applications of mathematics to music in aiming to build bridges between different musical genres, ranging from contemporary art music to popular music, including rock, pop, jazz and chanson. Beyond its academic ambition, the project carries an important societal dimension stressing the cultural component of 'mathemusical' research, that naturally resonates with the underlying philosophy of the “Imagine Maths”conference series. The article describes for a general public some of the most promising interdisciplinary research lines of this project

    Frozen and Invariant Quantum Discord under Local Dephasing Noise

    Full text link
    In this chapter, we intend to explore and review some remarkable dynamical properties of quantum discord under various different open quantum system models. Specifically, our discussion will include several concepts connected to the phenomena of time invariant and frozen quantum discord. Furthermore, we will elaborate on the relation of these two phenomena to the non-Markovian features of the open system dynamics and to the usage of dynamical decoupling protocols.Comment: 29 pages, 8 figure

    Reservoir cross-over in entanglement dynamics

    Full text link
    We study the effects of spontaneous emission on the entanglement dynamics of two qubits interacting with a common Lorentzian structured reservoir. We assume that the qubits are initially prepared in a Bell-like state. We focus on the strong coupling regime and study the entanglement dynamics for different regions of the spontaneous emission decay parameter. This investigation allows us to explore the cross-over between common and independent reservoirs in entanglement dynamics

    Correlations, deviations and expectations: the Extended Principle of the Common Cause

    Get PDF
    The Principle of the Common Cause is usually understood to provide causal explanations for probabilistic correlations obtaining between causally unrelated events. In this study, an extended interpretation of the principle is proposed, according to which common causes should be invoked to explain positive correlations whose values depart from the ones that one would expect to obtain in accordance to her probabilistic expectations. In addition, a probabilistic model for common causes is tailored which satisfies the generalized version of the principle, at the same time including the standard conjunctive-fork model as a special case

    Transverse Ising Model: Markovian evolution of classical and quantum correlations under decoherence

    Full text link
    The transverse Ising Model (TIM) in one dimension is the simplest model which exhibits a quantum phase transition (QPT). Quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity are known to provide signatures of QPTs. The issue is less well explored when the quantum system is subjected to decoherence due to its interaction, represented by a quantum channel, with an environment. In this paper we study the dynamics of the mutual information I(ρAB)I(\rho_{AB}), the classical correlations C(ρAB)C(\rho_{AB}) and the quantum correlations Q(ρAB)Q(\rho_{AB}), as measured by the QD, in a two-qubit state the density matrix of which is the reduced density matrix obtained from the ground state of the TIM in 1d. The time evolution brought about by system-environment interactions is assumed to be Markovian in nature and the quantum channels considered are amplitude damping, bit-flip, phase-flip and bit-phase-flip. Each quantum channel is shown to be distinguished by a specific type of dynamics. In the case of the phase-flip channel, there is a finite time interval in which the quantum correlations are larger in magnitude than the classical correlations. For this channel as well as the bit-phase-flip channel, appropriate quantities associated with the dynamics of the correlations can be derived which signal the occurrence of a QPT.Comment: 8 pages, 7 figures, revtex4-1, version accepted for publication in Eur. Phys. J.
    corecore