70,086 research outputs found

    Nano-scale analysis of titanium dioxide fingerprint-development powders

    Get PDF
    Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles. Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO2 particles and efficacy of print development

    Impurity correlations in dilute Kondo alloys

    Full text link
    The single impurity Kondo model is often used to describe metals with dilute concentrations (n_i) of magnetic impurities. Here we examine how dilute the impurities must be for this to be valid by developing a virial expansion in impurity density. The O(n_i^2) term is determined from results on the 2-impurity Kondo problem by averaging over the RKKY coupling. The non-trivial fixed point of the 2-impurity problem could produce novel singularities in the heat capacity of dilute alloys at O(n_i^2).Comment: 6 pages, no figure

    Orbital selective Mott transition in multi-band systems: slave-spin representation and dynamical mean-field theory

    Full text link
    We examine whether the Mott transition of a half-filled, two-orbital Hubbard model with unequal bandwidths occurs simultaneously for both bands or whether it is a two-stage process in which the orbital with narrower bandwith localizes first (giving rise to an intermediate `orbital-selective' Mott phase). This question is addressed using both dynamical mean-field theory, and a representation of fermion operators in terms of slave quantum spins, followed by a mean-field approximation (similar in spirit to a Gutzwiller approximation). In the latter approach, the Mott transition is found to be orbital-selective for all values of the Coulomb exchange (Hund) coupling J when the bandwidth ratio is small, and only beyond a critical value of J when the bandwidth ratio is larger. Dynamical mean-field theory partially confirms these findings, but the intermediate phase at J=0 is found to differ from a conventional Mott insulator, with spectral weight extending down to arbitrary low energy. Finally, the orbital-selective Mott phase is found, at zero-temperature, to be unstable with respect to an inter-orbital hybridization, and replaced by a state with a large effective mass (and a low quasiparticle coherence scale) for the narrower band.Comment: Discussion on the effect of hybridization on the OSMT has been extende

    Creating and observing N-partite entanglement with atoms

    Full text link
    The Mermin inequality provides a criterion for experimentally ruling out local-realistic descriptions of multiparticle systems. A violation of this inequality means that the particles must be entangled, but does not, in general, indicate whether N-partite entanglement is present. For this, a stricter bound is required. Here we discuss this bound and use it to propose two different schemes for demonstrating N-partite entanglement with atoms. The first scheme involves Bose-Einstein condensates trapped in an optical lattice and the second uses Rydberg atoms in microwave cavities.Comment: 12 pages, 4 figure

    <i>‘What retention’ means to me</i>: the position of the adult learner in student retention

    Get PDF
    Studies of student retention and progression overwhelmingly appear adopt definitions that place the institution, rather than the student, at the centre. Retention is most often conceived in terms of linear and continuous progress between institutionally identified start and end points. This paper reports on research that considered data from 38 in-depth interviews conducted with individuals who had characteristics often associated with non-traditional engagement in higher education who between 2006 and 2010 had studied an ‘Introduction to HE’ module at one distance higher education institution, some of whom had progressed to further study at that institution, some of whom had not. The research deployed a life histories approach to seek a finer grained understanding of how individuals conceptualise their own learning journey and experience, in order to reflect on institutional conceptions of student retention. The findings highlight potential anomalies hidden within institutional retention rates – large proportions of the interview participants who were not ‘retained’ by the institution reported successful progression to and in other learning institutions and environments, both formal and informal. Nearly all described positive perspectives on lifelong learning which were either engendered or improved by the learning undertaken. This attests to the complexity of individuals’ lives and provides clear evidence that institution-centric definitions of retention and progression are insufficient to create truly meaningful understanding of successful individual learning journeys and experiences. It is argued that only through careful consideration of the lived experience of students and a re-conception of measures of retention, will we be able to offer real insight into improving student retention

    Self-diffusion coefficients of charged particles: Prediction of Nonlinear volume fraction dependence

    Full text link
    We report on calculations of the translational and rotational short-time self-diffusion coefficients DstD^t_s and DsrD^r_s for suspensions of charge-stabilized colloidal spheres. These diffusion coefficients are affected by electrostatic forces and many-body hydrodynamic interactions (HI). Our computations account for both two-body and three-body HI. For strongly charged particles, we predict interesting nonlinear scaling relations Dst1atϕ4/3D^t_s\propto 1-a_t\phi^{4/3} and Dsr1arϕ2D^r_s\propto 1-a_r\phi^2 depending on volume fraction ϕ\phi, with essentially charge-independent parameters ata_t and ara_r. These scaling relations are strikingly different from the corresponding results for hard spheres. Our numerical results can be explained using a model of effective hard spheres. Moreover, we perceptibly improve the known result for DstD^t_s of hard sphere suspensions.Comment: 8 pages, LaTeX, 3 Postscript figures included using eps

    Weight-Training Injuries: A Systematic Review of the Etiology, Risk Factors, and Interventions

    Get PDF
    Please view abstract in the attached PDF fil
    corecore